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Calculus was created to describe how quantities change. It has
two basic procedures that are opposites of one another :

. differentiation, for finding the rate of change of a

given function, and

. integration, for finding a function having a given rate

of change.

Both of these procedures are based on the fundamental concept

of the limit of a function.

DEFINITION: (informal)

If f (x) is defined for all x near a, except possibly at a itself, and if
we can ensure that f(x) is as close as we want to L by taking x
close enough to a, but not equal to a, we say that the function f

approaches the limit L as x approaches a, and

we write

im f(x) = L.

X—4

DEFINITION: (informal)

If f(x) is defined on some interval (b, a) extending to the left of x
= a, and if we can ensure that f (x) is as close as we want to L by
taking x to the left of a and close enough to a, then we say f (x)
has left limit L at x = a, and we write

i Fial =l

X—d—
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If f (x) is defined on some interval (a, b) extending to the right
of x = a, and if we can ensure that f (x ) is as close as we want to
L by taking x to the right of a and close enough to a, then we
say f(x) has right limit Lat x = a, and we

write

lim f(x)=L.

x—a+

THEOREM:
A function f (x) has limit L at x = a if and only if it has both left

and right limits there and these one-sided limits are both
equal to L:

xh_r)r:l ) =L: = *Iiltrll_ Filx)= ‘Iir‘l'l_‘. )=k

LIMIT RULES:

It limg. .o flx) = L, limy_, g(x) = M, and k is a constant, then

1. Limit of a sum: im{f{x)+gx)]l=L+M

2. Limitof a difference:  lim {f(x) — g(x)] = L — M

3. Limit of a product: rlil’l'r floygley =LM

4. Limitof a multiple:  Jim k/(x) = kL

5. Limit of a quotient: lim Sy = £ it M #£0.
r—a g(x) M

If m is an integer and n is a positive integer, then

6. Limit of a power: lim [f(,t)]'“"'" = L"™" provided L > 0 if n is
roa even,and L # 0ifm < (.
If f{x) < g(x)on an interval containing @ in its interior, then

7. Order is preserved: L=M

Rules 1-6 are also valid for right limits and left limits. So is Rule 7, under the
assumption that f(x) < g(x)on an open interval extending in the appropriate direction
from a.

Limits of Polynomia Is and Rational Functions:

1. If P(x)is a polynomial and a is any real number, then

lim P(x) = Pla).
* 0

P
2. If P(x) and Q(x) are polynomials and Q(a) # 0, then

Px) Pla)

li - = .
L0 0@

The Squeeze Theorem:

Suppose that f(x) < g(x) < h(x) holds for all x in some open interval
containing a, except possibly at x = a itself. Suppose also that

lim f(x) = lim h(x) = L.

X+

Then
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Iim g{x) =L

>

also. Similar statements hold for left and right limits.

Limits At Infinity and Infinite Limits:

(i) limits at infinity, where x becomes arbitrarily large, positive
or negative;
divide the numerator and denominator by the highest
power of x appearing in the denominator!
The limits of a rational function at infinity and negative
infinity either both fail to exist or both exist and are
equal.
DEFINITION: (informal)

If the function f is defined on an interval (a, 0o) and if we
can ensure that f (x) is as close as we want to the number
L by taking x large enough, then we say that f (x)
approaches the limit L as x approaches infinity, and we
write

lim. f{x) = L.

X— 00

If f is defined on an interval ( -00, b) and if we can ensure
that f (x) is as close as we want to the number M by
taking x negative and large enough in absolute value,
then we say that f (x) approaches the limit M as x
approaches negative

infinity, and we write

lim f(x)= M.

X——020

(i) infinite limits, which are not really limits at all but provide
useful symbolism for describing the behaviour of functions
whose values become arbitrarily large, positive or negative.

we said that such a limit does not exist, but we can assign

o0 or -oo to such limits.

o0 and - are not numbers!
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Question 1
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Question 2
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Question 3
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X<b
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Question 5
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50 fle) = {:J } {—.rJ. Show that limg_a f({x) exist but is not equal to f(2).
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Question 6
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Question 8
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8. Evaluate
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Question 9
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9. Evaluate
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