Math 119-Calculus with Analytic Geometry
Topics to be covered: (Oct. 19-23)
1.2 Limits of Functions
1.3 Limits at Infinity and Infinite Limits

Course webpage: http://ma119.math.metu.edu.tr/
(1) метบ

Mathematics Department

Gamzegül KARAHISARLI
gamzegul@metu.edu.tr
https://blog.metu.edu.tr/gamzegul/

INTRODUCTION:

Calculus was created to describe how quantities change. It has two basic procedures that are opposites of one another :

-	differentiation, for finding the rate of change of a given function, and
-	integration, for finding a function having a given rate of change.

Both of these procedures are based on the fundamental concept of the limit of a function.

DEFINITION: (informal)
If $\mathrm{f}(\mathrm{x})$ is defined for all x near a , except possibly at a itself, and if we can ensure that $f(x)$ is as close as we want to L by taking x close enough to a, but not equal to a, we say that the function f approaches the limit L as x approaches a, and we write

$$
\lim _{x \rightarrow a} f(x)=L .
$$

DEFINITION: (informal)
If $f(x)$ is defined on some interval (b, a) extending to the left of x $=a$, and if we can ensure that $f(x)$ is as close as we want to L by taking x to the left of a and close enough to a, then we say $f(x)$ has left limit L at $x=a$, and we write

$$
\lim _{x \rightarrow a-} f(x)=L
$$

If $f(x)$ is defined on some interval (a, b) extending to the right of $x=a$, and if we can ensure that $f(x)$ is as close as we want to L by taking x to the right of a and close enough to a, then we $\underline{\text { say } f(x) \text { has right limit Lat } x=a \text {, and we }, ~=~}$ write

$$
\lim _{x \rightarrow a+} f(x)=L .
$$

THEOREM:

A function $f(x)$ has limit L at $x=a$ if and only if it has both left and right limits there and these one-sided limits are both equal to L :

$$
\lim _{x \rightarrow a} f(x)=L \quad \Longleftrightarrow \quad \lim _{x \rightarrow a-} f(x)=\lim _{x \rightarrow a+} f(x)=L .
$$

LIMIT RULES:

If $\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$, and k is a constant, then

1. Limit of a sum: $\quad \lim _{x \rightarrow a}[f(x)+g(x)]=L+M$
2. Limit of a difference: $\quad \lim _{x \rightarrow a}[f(x)-g(x)]=L-M$
3. Limit of a product: $\quad \lim _{x \rightarrow a} f(x) g(x)=L M$
4. Limit of a multiple: $\quad \lim _{x \rightarrow a} k f(x)=k L$
5. Limit of a quotient: $\quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}, \quad$ if $M \neq 0$.

If m is an integer and n is a positive integer, then
6. Limit of a power: $\quad \lim _{x \rightarrow a}[f(x)]^{m / n}=L^{m / n}, \begin{aligned} & \text { provided } L>0 \text { if } n \text { is } \\ & \text { even, and } L \neq 0 \text { if } m<0 .\end{aligned}$

If $f(x) \leq g(x)$ on an interval containing a in its interior, then
7. Order is preserved: $\quad L \leq M$

Rules 1-6 are also valid for right limits and left limits. So is Rule 7, under the assumption that $f(x) \leq g(x)$ on an open interval extending in the appropriate direction from a.
Limits of Polynomia Is and Rational Functions:

1. If $P(x)$ is a polynomial and a is any real number, then

$$
\lim _{x \rightarrow a} P(x)=P(a)
$$

2. If $P(x)$ and $Q(x)$ are polynomials and $Q(a) \neq 0$, then

$$
\lim _{x \rightarrow a} \frac{P(x)}{Q(x)}=\frac{P(a)}{Q(a)}
$$

The Squeeze Theorem:

Suppose that $\mathbf{f}(\mathbf{x}) \leq \mathbf{g}(\mathbf{x}) \leq \mathbf{h}(\mathbf{x})$ holds for all x in some open interval containing a , except possibly at $\mathrm{x}=\mathrm{a}$ itself. Suppose also that

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L .
$$

Then

$$
\lim _{x \rightarrow a} g(x)=L
$$

also. Similar statements hold for left and right limits.

Limits At Infinity and Infinite Limits:
(i) limits at infinity, where x becomes arbitrarily large, positive or negative;
divide the numerator and denominator by the highest
power of x appearing in the denominator!
The limits of a rational function at infinity and negative infinity either both fail to exist or both exist and are equal.
DEFINITION: (informal)
If the function f is defined on an interval ($a, o o$) and if we can ensure that $f(x)$ is as close as we want to the number L by taking x large enough, then we say that $f(x)$ approaches the limit L as x approaches infinity, and we write

$$
\lim _{x \rightarrow \infty} f(x)=L .
$$

If f is defined on an interval ($-00, b$) and if we can ensure that $f(x)$ is as close as we want to the number M by taking x negative and large enough in absolute value, then we say that $f(x)$ approaches the limit M as x approaches negative infinity, and we write

$$
\lim _{x \rightarrow-\infty} f(x)=M
$$

(ii) infinite limits, which are not really limits at all but provide useful symbolism for describing the behaviour of functions whose values become arbitrarily large, positive or negative.
we said that such a limit does not exist, but we can assign ∞ or $-\infty$ to such limits.
∞ and $-\infty$ are not numbers!

Question 1

a)

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow-1^{-} \\
x<-1}} f(x)=\lim _{x \rightarrow-1^{-}} 2-x=3 \\
& \lim _{\substack{x \rightarrow-1^{+} \\
x>-1}} f(x)=\lim _{x \rightarrow-1^{+}} x=-1
\end{aligned}
$$

Recall:

Since $3 \neq-1, \lim _{x \rightarrow-1} f(x)$ does not exist!
b) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x=0 \quad\left(\begin{array}{c}\text { since the fund is the sone both } \\ \text { on the right or left side of }\end{array}\right.$
 the point.)
c)

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow 1^{+} \\
x>1}} f(x)=\lim _{x \rightarrow 1^{+}}(x-1)^{2}=0 \\
& \lim _{\substack{x \rightarrow 1^{-} \\
x<1}} f(x)=\lim _{x \rightarrow 1^{-}} x=1
\end{aligned}>\begin{aligned}
& \text { since } 0 \neq 1, \lim _{x \rightarrow 1} f(x) \\
& \text { does not exist! }
\end{aligned}
$$

Question 2
2. Let $f(x)=\widetilde{\widetilde{|x-2|}} \underset{x-2}{ }$.
a. $\lim _{x \rightarrow 0} f(x)=$?
b. $\lim _{x \rightarrow 2} f(x)=$?

$$
f(x)= \begin{cases}\frac{x-2}{x-2}=1, & \text { if } x>2 \\ \frac{-(x-2)}{x-2}=-1 & \text { if } x<2\end{cases}
$$

as a note, fund is undfn. at $x=2!$

Solution:

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{-(x-2)}{x-2}=-1
$$

b)

$$
\lim _{\substack{x \rightarrow 2^{+} \\ x>2 \\(x \neq 2)}} \frac{x-2}{x-2}=1 \quad \lim _{x \rightarrow 2^{-}} \frac{-(x-2)}{x-2}=-1
$$

Since $1 \neq-1$, $\lim _{x \rightarrow 2} f(x)$ does not
$|x| \quad \downarrow$

$$
f(x)=\{
$$

$$
\begin{array}{r}
\text { if } \begin{array}{l}
x>9 \\
x<q
\end{array}
\end{array}
$$

3. Evaluate the limit, if it exists
a. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$
b. $\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}$
c. $\lim _{t \rightarrow 0} \frac{(3+t)^{-1}-3^{-1}}{t}$
d. $\lim _{x \rightarrow 1} \frac{\sqrt{x}-x^{2}}{1-\sqrt{x}}$

Recall:

* $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
(*) $a^{2}-b^{2}=(a-b)(a+b)$

Solution:
a) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}=\lim _{\substack{x \rightarrow 1 \\ x \neq 1)}} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{x^{2}+x+1}{x+1}=\frac{3}{2}$
b)

$$
=\lim _{x \rightarrow 1}\left[x \cdot \frac{\sqrt{x}+1}{\sqrt{x}+x^{2}} \cdot\left(1+x+x^{2}\right)\right]=\frac{6}{2}=\frac{3}{7}
$$

$$
\begin{aligned}
& \text { c) } \\
& \text { c) } \begin{array}{ll}
& \lim _{t \rightarrow 0} \frac{(3+t)^{-1}-3^{-1}}{t}= \\
= & \lim _{t \rightarrow 0} \frac{-1}{3 \cdot(3+t)}=\frac{-1}{9}
\end{array} \\
& \text { d) } \lim _{x \rightarrow 1} \frac{\sim}{\sqrt{x}-x^{2}}(\overbrace{\frac{\sqrt{x}+x^{2}}{1-\sqrt{x}}}^{\sqrt{x}+x^{2}} \cdot \frac{(1+\sqrt{x})}{1+\sqrt{x}}) \downarrow \frac{\text { Real }}{\frac{a^{2}-b^{2}=(a-b)(a+b)}{a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)}} \\
& =\lim _{x \rightarrow 1} \frac{\widetilde{x-x^{4}} \cdot \frac{x \cdot\left(1-x^{3}\right)}{1+\sqrt{x}}}{1-x}=\lim _{\sqrt{x \rightarrow 1}}^{\sqrt{x}+x^{2}} \frac{x \cdot(1-x)\left(1+x+x^{2}\right)}{1-1 / x} \cdot\left(\frac{\sqrt{x}+1}{\sqrt{x}+x^{2}}\right)
\end{aligned}
$$

(4) Note: $L \times \perp$: the greatest integer func.
it takes the greatest int. less then or equal to
x.
(*) if $a \leqslant x<a+1$ where a is an integer $(a \in \mathscr{L}$)

$$
\lfloor x\rfloor=a
$$

Ex: $\lfloor 2.4\rfloor=2$
$\lfloor 3\rfloor=3 \quad\lfloor-1.2\rfloor=-2$

λ the greatest integer
a) $f(x)={\underset{\nu}{l}}_{x}-\lfloor x\rfloor$ the greatest integer equal x

$$
f(x)= \begin{cases}x-\lfloor x\rfloor \\ x-x=0 & \text { if } x \in \mathbb{2} \quad \text { (an integer) } \\ x-a & \text { if } x \notin 2<0^{n^{d}} a<x<a+1 \\ \text { where } a \in \mathbb{Z}\end{cases}
$$

$$
f(x)= \begin{cases}0, & \text { if } x \in \mathcal{U} \\ x-a, & \text { if } x \notin \psi \text { and } a<x<a+1 \\ \text { where } a \in \mathcal{U}\end{cases}
$$

$$
a<x<a+1
$$

$$
\begin{aligned}
& a<x<a+1 \\
& 0<x-a<1 \Rightarrow 0<f(x)<1
\end{aligned}
$$

b) i) $\lim _{x \rightarrow n^{-}} f(x)=\lim _{x \rightarrow n^{-}} x-\lfloor x\rfloor=n-(n-1)=1$

$$
\sum 1 \neq 0, \lim _{x \rightarrow n} f(x)
$$

i) $\lim _{x \rightarrow n^{+}} f(x)=\lim _{x \rightarrow n^{+}} x-\lfloor x\rfloor=n-n=0$ does not exist!

C) $\lim _{x \rightarrow b} f(x)$ exist for what values of b ?
from part b) (9) if $b \in \mathbb{Z} \Rightarrow \lim _{x \rightarrow b} f(x)$ does not exist!
(). if $b \notin z,(a<b<a+1$ where a is 0 integer $)$

$$
\begin{aligned}
\lim _{x \rightarrow b^{+}} f(x)= & \lim _{\substack{x \rightarrow b^{+} \\
x>b}} x-\lfloor x\rfloor=b-a \\
\lim _{x \rightarrow b^{-}} f(x)= & \lim _{\substack{x \rightarrow b^{-} \\
x<b}} x-\lfloor x\rfloor=b-a
\end{aligned}
$$

$\Rightarrow \lim f(x)=b-a$ when $b \notin z$ and $a<b<a+1$ where a is on integer.
$\Rightarrow \lim _{x \rightarrow b} f(x)=b-a$ when $b \notin z$ and $a<b<a+1$ where a is.
$\lim _{x \rightarrow b} f(x)$ exist only $b \notin z!!$
") when $b \in \mathbb{R}-\mathbb{Z}$
5. If $f(x)=\lfloor x\rfloor+\lfloor-x\rfloor$. Show that $\lim _{x \rightarrow 2} f(x)$ exist but is not equal to $f(2)$.

Solution:
Let's calculate $f(2)=\lfloor 2\rfloor+\lfloor-2\rfloor=2-2=0$

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\lfloor x\rfloor+[\overbrace{-x}^{4}]=2+(-3)=-1 \\
& (x>2 \Rightarrow-x<-2) \\
& \xrightarrow[2]{2}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x)= & \lim _{\substack{x \rightarrow 2^{-} \\
(x<2 \Rightarrow-x>-2)}}\lfloor x\rfloor+\lfloor-x\rfloor=1+(-2)=-1
\end{aligned}
$$

Since $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=-1$, we hove

$$
\lim _{x \rightarrow 2} f(x)=-1 \neq 0=f(2)
$$

Question 6
6. Evaluate

$$
\lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}
$$

$$
\begin{aligned}
& \text { Solution: } \\
& \lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1} \cdot \overbrace{\frac{(0)}{6-x}+2}^{\sqrt{6-x}+2} \cdot \frac{\sqrt{3-x}+1}{\sqrt{3-x}+1} \\
& =\lim _{x \rightarrow 2} \frac{6-x-4}{\frac{3-x-1}{2}} \cdot \frac{\sqrt{3-x}+1}{\sqrt{6-x}+2}=\lim _{x \rightarrow 2} \frac{\sqrt{3-x}+1}{\sqrt{6-x}+2}=\frac{2}{4}=1 / 2
\end{aligned}
$$

7. Prove that

Solution:
a)

$$
\begin{array}{ll}
-1 \leq \cos \left(\frac{2}{x}\right) \leq 1 & \text { for all } \\
x \neq 0
\end{array} \quad \Rightarrow \lim _{x \rightarrow a} g(x)=L
$$

Recall: (Squeze tho.)

$$
\left\{\begin{array}{l}
f(x) \leq g(x) \leq h(x) \quad \text { and } \\
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
\end{array}\right.
$$

b) $\quad-1 \leq \sin \left(\frac{\pi}{h}\right) \leq 1$ for all $h \neq 0$

$$
\frac{\sqrt{h}}{e} \leq \sqrt{h} \cdot e^{\sin \left(\frac{\pi}{h}\right)} \leq \sqrt{h} \cdot e
$$

$$
\begin{aligned}
& x_{1} \leq x_{2}=1 \text { fund } \\
& \text { increasing }
\end{aligned}
$$

$$
x_{1} \leq x_{2} \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)
$$

decreasing func.

Note:
$\infty,-\infty$ ore not real numbers!
8. Evaluate

$$
\lim _{x \rightarrow \pm \infty} \frac{1}{\sqrt{x^{2}-2 x}-2}
$$

Solution:

$$
\frac{\text { Solution }}{\lim _{x \rightarrow \pm \infty}} \frac{1}{\sqrt{x^{2}-2 x}-2}=\lim _{x \rightarrow \pm \infty} \frac{1}{\sqrt{x^{2} \cdot\left(1-\frac{2}{x}\right)}-2}=\lim _{x \rightarrow \pm \infty} \frac{1}{\frac{1}{x \left\lvert\, \sqrt{-\frac{2}{x}}\right.}-2}
$$

$$
=0
$$

Question 9
9. Evaluate

$$
\begin{array}{r}
\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{x+1}-\frac{x^{2}}{x-1}\right) \\
(\mathbf{x}-\mathbf{1}) \quad\left(x_{\mathbf{+}}\right)
\end{array}
$$

$$
\begin{aligned}
& \text { Solution: } \\
& \lim _{x \rightarrow \infty} \frac{x^{2} \cdot(x-1)-x^{2} \cdot(x+1)}{(x+1)(x-1)}=\lim _{x \rightarrow \infty} \frac{x^{2} \cdot(x-1-x-1)}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{x^{2} \cdot(-2)}{x^{2}-1} \\
& \lim _{x \rightarrow \infty} \frac{x^{2} \cdot(-2)}{x^{2} \cdot\left(1-\frac{1}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{-2}{1-\frac{1}{x^{2}} 0}=\frac{-2}{1}=-2
\end{aligned}
$$

