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5. Transient Heat Conduction

One-dimensional, transient, differential equation

of heat conduction for a slab in Cartesian

coordinates with constant k and no heat

generation is:

2

2

p

T(x,t) 1 T(x,t) k
 =      ,      = 

t  cx


 

 



The exact (analytical) solution is beyond our

scope. Numerical solutions for simple cases will

be given later.
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The Heisler Charts are a collection of two charts per contained geometry developed

in 1947 by M. P. Heisler and expanded in 1961 by H. Gröber with a triple chart per

geometry, a plane wall (slab), cylinder, and sphere. The temperature distribution is

plotted as a function of time and position.

5.1  Transient Temperature Charts – Heisler Charts

The temperature distribution for one-dimensional transient heat conduction in simple

geometries such as a slab, cylinder and sphere have been calculated and are

available in the form of transient temperature charts, called Heisler Charts.
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The Heisler Charts can only be used when:

• The body is initially at a uniform temperature;

• The temperature of the medium surrounding the body is constant and uniform;

• The convection heat transfer coefficient is constant and uniform; and

• There is no heat generation in the body.

The three charts associated with each geometry, slab, cylinder, and sphere, are:

* The temperature,T0, at the center of the geometry at a given time t.

* The temperature at other locations at the same time in terms of T0.

* The total amount of heat transfer up to the time t.
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5.1.1  Heisler Charts for a Slab with Constant k

2

2

T(x,t) 1 T(x,t)
 =         in  - L  x  L   and

 t x

                                          t > 0



 
 



IC: T(x,0) = T       in  - L x  L   and   t = 0i  

BC’s:
  0 ,   0

 T
(1)      = 0

 x x t 





 
  L ,   0

 T
(2)    - k  = h T(L,t) - T

 x x t



 





Differential Equation:
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In order to use the charts, we need to define a new non-dimensional temperature

θ(x,t) as

i

T(x,t) - T
θ(x,t) = 

T  - T





2

2

θ(x,t) 1  θ(x,t)
 =         in  - L  x  L   and   t > 0

 t x 

 
 


Differential Equation:

Initial Condition: θ = 1      in  - L x  L   and   t = 0 

Boundary Conditions:

 θ
(1)      = 0      at  x = 0  ,  t > 0

 x





 θ
(2)    k  + h θ = 0      at  x = L , t > 0

 x




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Define non-dimensional variables:
x

X = 
L

T(x,t) - T
θ(x,t) = 

T  - Ti





Define non-dimensional parameters:

2

 t
 =  = Fo      Fourier number

L




h L
 = Bi      Biot number

k

Differential Equation:
2

2

θ(X, )  θ(X, )
 =        in  0  X  1   and    > 0

  X

 




 
 



Initial Condition: θ(X,0) = 1     in  0 X  1   and    = 0 

Boundary Conditions:
X  0 ,   0

 
 = 0 

 X 



 



 X  1 ,   0

 
 = - Bi  θ(1, ) 

 X 




 





and

and
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Remember the definitions of Biot number and Fourier number:

2

 t Rate of conduction
Fourier number      = Fo =  = 

Rate of storageLc




c

c cond

conv

L
h L Rk A Biot number      Bi =  =  = 

1k R

h A

c

Volume, V
Characteristic Length     L  = 

Heat transfer surface area, A
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Exact Solution (for the slab – using a method called separation of variables)

      
2

θ(X, ) = A cos(λX) + B sin(λX)  e        in  0  X  1   and    > 0

Apply Boundary Conditions and Initial Condition 

2

1

4 sin( )
θ(X, ) =  cos(λ X)  e        in  0  X  1   and    > 0

2  + sin(2 )
nn

n

n nn

 
 

 






 
  

 


λn’s (eigenvalues) are the roots of the equation

(characteristic equation or eigenfunction )
λ  tan(λ ) = Bi n n

One-term approximation for  Fo > 0.2
2
1

1 1θ(X, ) = A  cos(λ X) e    
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The solution is given in

the chart as θ0 vs

Fo = α t/L2 with 1/Bi as

the parameter.
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Example 1

L = 30 cm

k = 0.865 W/m.K

Ti = 500 °C

α = 1.3 10-6 m2/s

T∞ = 50 °C

h = 28.4 W/m2.K

Find the temperature at the insulated surface at x = 0 and time t = 20 hours.

Both Figures represent the same problem due to symmetry.
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-6

2 2

 t (1.3 10 ) (20) (3600)
 =   1.0

L (0.3)




k 0.865
 =   0.1

h L (28.385) (0.3)


Use the first chart

0

i

T  - T
 = 0.18

T  - T





   0 iT  = (0.18) T  - T  + T  = (0.18) 500 - 50  + 50

     = 131 C

 
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The temperature at a

position x/L is found

using the second chart

given here.
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Heat Transfer:

The maximum amount of heat that a body can gain (or lose if Ti = T∞) occurs

when the temperature of the body changes from the initial temperature Ti to the

ambient temperature

The amount of heat (thermal energy) transfer, E , at a finite time t is can be

expressed as

maxQ  = m c  (T  - T ) =  V c  (T  - T )   in Joulesp i p i 

.

0 0
Q =   = - k A   

t t T
Q dt dt

x

 
 

 
 

The third Heisler chart gives  Q / Qmax. It is given as Q / Q0 in the third chart.
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Graphical results for the energy transferred from a plane wall over the time interval

t are presented in third chart given below.
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5.1.2  Heisler Charts for an Infinite Cylinder with Constant k

0

1  θ 1  θ
  r  =         in  0  r  r    and

r  r  r  t

                                                t > 0



   
  

   

IC: 0θ = 1      in  0  r  r    and   t = 0 

BC’s:

 θ
(1)      = 0    at  r = 0 , t > 0

 r





0

 θ
(2)    k  + h  = 0   at  r = r  , t > 0

 r





Differential Equation:
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The solution is given in

the chart as θ0 vs

Fo = α t/L2 with 1/Bi as

the parameter.
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The temperature at a

position r/r0 is found

using the second chart

given here.
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Graphical results for the energy transferred from a infinite cylinder over the time

interval t are presented in third chart given below.
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Example 2

r0 = 2.5 cm

k = 215 W/m.K

Ti = 200 °C

α = 18.4 10-5 m2/s

ρ = 2700 kg/m3

c = 0.9 kJ/kg.K

T∞ = 50 °C

h = 525 W/m2.K

Calculate

(a) Temperature at r = 1.2 cm

(b) Heat loss per unit pipe 

length

after 1 minute exposure to 

the environment
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-5

2 2
0

 t (8.4 10 ) (60)
 =  = 8.064

r (0.025)



0

k 215
 =  = 16.38

h r (525) (0.025)

Use the first chart

0

i

T  - T
 = 0.38

T  - T





   0 iT  = (0.38) T  - T  + T  = (0.38) 200 - 70  + 70 = 119.4 C 

0

k
 = 16.38

h r

0

r 1.2
 =  = 0.48

r 2.5

Use the scond chart

0

T - T
 = 0.98

T  - T





   0T = (0.98) T  - T  + T  = (0.98) 119.4 - 70  + 70 = 118.4 C 
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2 -5

2 2

h   t (525) (8.4 10 ) (60)
 =  = 0.03

k (215)



0h r (525) (0.025)
 =  = 0.061

k 215

Use the third chart

0

Q
 = 0.65

Q

0 iQ  =  c V (T  - T ) 

2
2 50 0

i

Q  r  L
 =  c  (T  - T ) = (2700) (900)  (0.025)  (200 - 70) = 6.203 10  J/m

L L


 

0QQ
 =  (0.65) = 4.032 J/m 

L L
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5.1.2  Heisler Charts for a sphere with Constant k

2
02

1  θ 1  θ
  r   =         in  0  r  r    and

 r  r  tr

                                                t > 0



   
  

   

0θ = 1      in  0  r  r    and   t = 0 

BC’s:

 θ
(1)      = 0    at  r = 0  t > 0

 r





0

 θ
(2)    k  + h  = 0   at  r = r   t > 0

 r





Differential Equation:
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The solution is given in

the chart as θ0 vs

Fo = α t/L2 with 1/Bi as

the parameter.
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Example 3

r0 = 10 cm

k = 50 W/m.K

Ti = 250 °C

c = 0.9 kJ/kg.K

T∞ = 10 °C

h = 280 W/m2.K

How long does it take for the 

center temperature, T0, to 

reach 150 °C?



ME – 212   THERMO-FLUIDS ENGINEERING II

Prof. Dr. Faruk Arınç Spring 2013

2
0

 t
  0.5

r




k 0.865
 =   0.1

h L (28.385) (0.3)


Use the first chart
0

i

T  - T 150 - 10
 =  = 0.5833

T  - T 250 - 10





2
0

-5

r 0.01
t = (0.5)  = (0.5)  = 357.14 s = 5.95 min

1.4 10
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The temperature at a

position r/r0 is found

using the second chart

given here.
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Graphical results for the energy transferred from a sphere over the time interval t

are presented in third chart given below.
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It is difficult to read the upper left hand corner of Heissler charts. Approximate

solutions can be obtained with one-term approximations of the exact solutions

within 2 % accuracy. Define , then:

One-term approximation for Heisler charts

2f 1
slab 1 1

i f slab

T(x,t) - T  x
θ(x,t)  =  = C  exp( -  Fo) cos      ,   Fo > 0.2

T  - T L




   
   

  

2f 1
inf cyl 1 1 0

i f 0inf cyl

T(r,t) - T  r
θ(r,t)  =  = C  exp( -  Fo) J     ,   Fo > 0.2

T  - T r




  
  

   

1

02f
sphere 1 1

1i f sphere

0

 r
sin

rT(r,t) - T
θ(r,t)  =  = C  exp( -  Fo)     ,   Fo > 0.2

 rT  - T

r






 
 

   
 
 

1 1λ  tan(λ ) = Bi 
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Total heat transfer can be obtained by integration over volume:

1
0,slab 

max 1slab

sin( )Q
 = 1 - 

Q






 
 
 

max p f iQ  = m c  (T  - T )

1 1
0,inf cyl 

max 1inf cyl

J ( )Q
 = 1 - 2 

Q






 
 
 

1 1 1
0,sphere 3

max 1sphere

sin( ) -  cos( )Q
 = 1 - 3 

Q

  




 
 
 

See Tables 11-2 and 11-3
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5.2  Lumped-capacity Systems

In transient (time dependent) heat conduction, temperature varies with location and

time. Sometimes, the variation with location can be ignored, and the entire solid is

assumed to be at a uniform temperature at any given time.

The lumped-capacity system analysis is valid when Biot number is less than 0.1.

𝑩𝒊 =
𝑳𝐜/𝒌𝐀𝐬

𝟏/𝒉𝑨𝐬

=
𝑹𝐜𝐨𝐧𝐝

𝑹𝐜𝐨𝐧𝐯

=
𝒉 𝑳𝐜
𝒌

< 𝟎. 𝟏

𝑳𝐜 =
𝑽𝒐𝒍𝒖𝒎𝒆, 𝑽

𝑯𝒆𝒂𝒕 𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓 𝒔𝒖𝒓𝒇𝒂𝒄𝒆 𝒂𝒓𝒆𝒂, 𝑨𝐬
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First Law:

න
𝑻
𝐢

𝑻 𝒅𝑻

𝑻 − 𝑻𝐟
= −

𝒉 𝑨

𝑴 𝒄𝐩
න
𝟎

𝒕

𝒅𝒕

𝑻 𝒕 − 𝑻𝐟
𝑻𝐢 − 𝑻𝐟

= 𝒆𝒙𝒑 −
𝒉 𝑨

𝑴 𝒄𝐩
𝒕

Substitute  m = ρ V  and  Lc = V/A
𝑻 𝒕 − 𝑻𝐟
𝑻𝐢 − 𝑻𝐟

= 𝒆𝒙𝒑 −
𝒉

ρ 𝒄𝐩𝑳𝐜
𝒕

τ = Time Constant

dU
 = Q

dt

 p f

dT(t)
m c   = - h A T(t) - T

dt

5.2.1  One Lumped-capacity System with Convection Boundaries
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Change of temperature of a 

lumped system with time

𝑻𝒊𝒎𝒆 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 = τ =
ρ 𝒄𝐩𝑳𝐜
𝒉

Note that, after about 5 time 

constants, the temperature of 

the lumped system reaches 

almost the steady-state value
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 
A  h d T(t)

 +  T(t) - T  = 0    ,   IC:   for t = 0   T(0) = T
d t  c V

s
i

p


Define:  
c

h A h A h 
θ(t) = T(t) - T      and       =  =  =     time constant

 c V m c k L

s s

p p








 d θ(t)
 +  θ(t) = 0     ,     IC:   for t = 0   θ(0) = θ  = T  - T

d t
i i



Solution:

h A h 
-  t -  t

ρ V c k L -  t - Bi FoT(t) - T θ(t)
 =  =  e  = e  = e  = e

θ T  - T

s

p s

i i







h L
Bi =  = Biot Number         Ratio of resistances, 

k

c cond

conv

R

R

2

 t
Fo =  = Fourier Number 

L
s


Ratio of heat conducted to heat stored

Governing equation:
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h A h 
-  t -  t

ρ V c k L -  t - Bi FoT(t) - T θ(t)
 =  =  e  = e  = e  = e

θ T  - T

s

p s

i i







τ 3 > τ 2 > τ 1

τ 3 τ 2 τ 1

 This equation enables us to determine the

temperature T(t) of a body at time t, or

alternatively, the time t required for the

temperature to reach a specified value, T(t).

 The temperature of a body approaches the

ambient temperature, Tf or T∞, exponentially.

 The temperature of the body changes rapidly

at the beginning, but rather slowly later on.

 A large value of τ indicates that the body

approaches the ambient temperature in a

short time.
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The rate of convection heat transfer between the body and the ambient can be

determined from Newton’s law of cooling

   
.

- Bi Fo

s s iQ(t) = h A  T - T(t)  = h A  T  - T  e     in Watts
 

The total heat transfer between the body and the ambient over the time interval, 0 to 

t, is simply the change in the energy content of the body:

    - Bi Fo

p i

0

Q = A  h T(t) - T  dt = m c T  - T 1 - e    in Joules
t

s  
 
 

The maximum heat transfer between the body and its surroundings (when the body 

temperature reaches T∞):

 maxQ  = m c  T  - T    in Joulesp i
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A large, pure Aluminum plate, thickness L = 1 inch (2.5 cm), at a uniform

temperature Ti = 93.3 °C is suddenly immersed in a well-stirred fluid at

temperature T∞ = 4.4 °C. The convective heat transfer coefficient is h = 96.5

W/m2.K.

Determine the time required for the center of the plate to reach T0 = 26.7 °C.

k = 20.6 Wm.K, ρ = 2735 kg/m3, cp = 837.3 J/kg.K

Check the Biot number first, and use lumped-capacity system analysis if

appropriate, i.e., if Bi < 0.1

Example 4

-3h L h Volume h A L 96.5 0.0254
Bi =  =      =   = 5.9 10  < 0.1

k k HT Area k 2 A 207.6 2

c 
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h A h 
-  t -  t

ρ V c k L -  t - Bi FoT(t) - T
 =  e  = e  = e  = e

T  - T

s

p s

i







 
-3

c

h A h 96.5 
 =  =  =  = 3.32 10

0.0254ρ V c ρ c  L (2735) (837.3) 
2

s

p p



-3- (3.32 10 ) tT(t) - T 26.7 - 4.4
 =  = e  = 0.25

T  - T 93.3 - 4.4i





-3

1
ln

0.25
t =  = 417.8 s = 6.96 min

3.32 10

 
 
 

Time

constant
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5.2.2 One Lumped-capacity System with Convection and Prescribed Heat

Flux Boundaries

Assumptions:

 Surface areas on both sides of the slab are

equal

 Bi < 0.1

 Constant properties

First Law:   p

dT(t)
A q + A h T  - T(t)  =  c  A L     ,    t > 0

dt




Initial Condition: T(0) = Ti
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Define:

θ(t) = T(t) - T∞

p

h
 = 

 c  L



p

q
 = 

 c  L




-  t -  t

iθ(t) = θ  e  + (1 - e )   



θi = Ti - T∞

5.2.2 Two Lumped-capacity System with Convection Boundaries

Container, c

Fluid inside, i

Fluid outside, o

Temperatures, Ti and Tc, are

functions of time, only
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Fluid inside is well stirred. Fluid outside has a constant temperature,T∞.

Heat transfer areas are Ai and Ao.

Convective heat transfer coefficients are hi and ho.

Find the temperature profiles, Ti(t) and Tc(t).

Energy balance equations:

For the container:

  i
i i c i p i i

dT(t)
A  h  T (t) - T(t)  =  c  V  

dt
iInner fluid:

    c
i i i c o o c p c c

dT (t)
A  h  T(t) - T (t)  + A  h  T  - T (t)  =  c  V  

dt
c

Initial conditions: i c iT(t) = T (t) = T     for t = 0
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Define:
i iθ (t) = T(t) - T

 c cθ (t) = T (t) - T
 i oθ  = T  - T



i i
1

i i p i

A  h
m  = 

 V  c

i i
2

c c p c

A  h
m  = 

 V  c
o

3

c c p c

A  h
m  = 

 V  c

o



Differential equations become:

 i
1 i c

dθ (t)
 + m  θ (t) - θ (t)  = 0      for  t > 0

dt

 c
2 c i 3 c

dθ (t)
 + m  θ (t) - θ (t)  + m  θ (t) = 0      for  t > 0

dt

The lengthy solution will not be given here.
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5.3  Heat Conduction in

Semi-infinite solids
• A semi-infinite solid is an idealized body that 

has a single plane surface and extends to 

infinity in all directions.

• In this case, heat transfer occurs only in the direction normal to the surface (the 

x direction)                  one-dimensional problem.

• Assumptions:

– constant thermo-physical properties

– no internal heat generation

– uniform thermal conditions on its exposed 

surface

– initially a uniform temperature Ti throughout.
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Differential Equation:
2

2

T(x,t) 1 T(x,t)
 =   

 t x 

 



Boundary Conditions: T(0,t) = Ts

T(x ,t) = Ti 

Initial Condition: T(x,0) = Ti

Solution:
2- u(T(t) - T ) 2

 =  e du = erf( ) = 1 - erfc(1 - )
(T  - T )

s

i s

 
 

x
 = 

2  t



where Similarity variable
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See the related equations and graphs in the text book for other boundary 

conditions:

 Constant surface temperature

 Constant surface heat flux

 Convection at the surface

For convection at the surface:

2

2

(T(t) - T ) h x h  t h  t
 = 1 - erf( ) - exp  +  1 - erf  + 

(T  - T ) k kk

s

i s

 
 

     
      

         

x
 = 

2  t



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Example 5: Concrete semi-infinite body

Concrete

Given data:

Ti = 54 °C            h = 2.6 W/m2.K

T∞ = 10 °C          x = 7 cm

t = 30 minutes

Question:  T(x) = ?
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5.4  Multi-dimensional Systems – Product Solutions

Using a superposition approach called the product

solution, the one-dimensional heat conduction

solutions can also be used to construct solutions for

some two-dimensional (and even three-dimensional)

transient heat conduction problems.

Provided that all surfaces of the solid are subjected

to convection to the same fluid temperature, the

same heat transfer coefficient, h, and the body has

no internal heat generation.
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The solution can be generalized as follows:

The solution for a multidimensional geometry is the product of the solutions of the

one-dimensional geometries whose intersection is the multidimensional body.

For convenience, the one-dimensional solutions are denoted by

 

 

T(t,x) - T

(T  - T )i plane wall





 

inf . .

T(t,r) - T

(T  - T )i cyl





 

inf . body

T(t,x) - T

(T  - T )i semi



 

Plane Wall (slab)

Infinite Cylinder

Semi-infinite body
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Example 6:  Short Cylinder

•  Height a and radius ro.

•  Initially uniform temperature Ti.

•  No heat generation

•  At time t = 0:

– convection T∞

– heat transfer coefficient , h

Product solution:

     

 .  inf . .

T(t,r,x) - T T(t,x) - T T(t,r) - T
 =  * 

(T  - T ) (T  - T ) (T  - T )i i ishort cyl plane wall cyl

  

  
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Infinite rectangular bar:

L1 L2 *L1
L2

     

1 2inf . , , 

T(t,x) - T T(t,x) - T T(t,x) - T
 =  * 

(T  - T ) (T  - T ) (T  - T )i i ibar plate L plate L

  

  
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Semi-infinite rectangular bar:

L1 L2 *L1

L2

       

1 2inf . , , inf . 

T(t,x) - T T(t,x) - T T(t,x) - T T(t,x) - T
 =  *  * 

(T  - T ) (T  - T ) (T  - T ) (T  - T )i i i isemi bar plate L plate L semi body

   

    

*
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Rectangular parallelepiped:

L1
L3

*L1

L2

       

1 2 3. , , , L

T(t,x) - T T(t,x) - T T(t,x) - T T(t,x) - T
 =  *  * 

(T  - T ) (T  - T ) (T  - T ) (T  - T )i i i irec pp plate L plate L plate

   

   

*
L2 L3
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Semi-infinite slab:

L1

L1

     

1inf . , inf . 

T(t,x) - T T(t,x) - T T(t,x) - T
 =  * 

(T  - T ) (T  - T ) (T  - T )i i isemi slab plate L semi body

  

   

*
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Semi-infinite cylinder:

     

inf . . inf . . inf . 

T(t,r) - T T(t,r) - T T(t,x) - T
 =  * 

(T  - T ) (T  - T ) (T  - T )i i isemi cyl cyl semi body

  

   

*
b b
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Finite (short) cylinder:

     

 . inf . . , 

T(t,r) - T T(t,r) - T T(t,x) - T
 =  * 

(T  - T ) (T  - T ) (T  - T )i i ifinite cyl cyl plate L

  

  

*
bbL L
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Example 7

bL

Hot metals are quenched in cold fluids to change the material

properties. Consider a long 7.5 diameter cylinder of 316

stainless steel that is taken out of the furnace at 500 C and

plunged into a cold bath at 25 C. The convective heat transfer

coefficient is 1000 W/m2.K

Ac

(a) Determine the centerline temperature of the cylinder 90 s after it is quenched

(b) Determine the surface temperature of the cylinder 5 min after it is quenched

(c) Determine the time required for the centerline temperature to reach 50 C.
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