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4. Steady, Two-dimensional Heat Conduction

The differential equation of heat conduction in Cartesian coordinates with constant k

and no heat generation:
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The four boundary conditions for the T0,y)=T, T(Ly) =T,

given Figure, for instance, are: T(x,0)=T, T(x,H)=T,

There are three techniques to solve this partial differential equation:

1. Analytical,;
2. Graphical; and

3. Numerical.

The analytical (exact) solution using a method called separation of variables is:

T(x,y)—T, 4 - sinh[2n+ 1) (L — x)/H] sin[(2n+ 1) (ry/H]
T,-T, =« Z sinh[(2n + 1)(rr L/H] 2n+1

n=1

This is the temperature profile (distribution), T(x,y), in the solid. To find the heat

flow rate, Q, and Q,, apply Fourier’s law.
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The analytical (exact) solution is beyond our scope here.

In practice, the heat flow at the boundaries of the region is of interest:

The total heat flux is the vectorial sum of g, and q,. The total heat flow vector is

perpendicular to constant temperature lines (called isotherms) in the material.

Using this, one can find the total heat flow by constructing curvilinear-square plots

of isotherms and heat flow lanes. This is the basis of graphical solutions.

Other, more complex geometries, can be handled by numerical solutions, which

change the partial differential equation to a set of algebraic equations to be solved

with matrix handling routines.
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There is a short-cut procedure to find the heat flow rate (not the temperature
profile) when thermal resistance concept can be used, i.e., constant k, steady

state, no heat generation, finite regions, plus temperatures are specified at the

boundaries.
4.1 Graphical Analysis

In the given two dimensional geometry, draw constant-temperature lines (called
iIsotherms) as many as possible (more the better) and heat flow lines (called

adiabats) approximately perpendicular to the isotherms and forming approximate

squares. An example is shown in the Figure.
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Q=MQ,
Number of heat flow lanes / \ Heat flow rate through each lane
1 A =wAX A
g AT, :
Q KA E ~ wis the width of the region Q. =kw AT
J O AX, = Ay, B
AT ora :
AT = % where N = Number of equal temperature intervals
: AT ) M
Qi - k W A-I_I = k W ouerel :> g NI k AToverall
N w N
M _ Number of heat flow lanes

Define Shape Factor: S =
N  Number of equal temperature intervals

= S k AT,

overall

= IO-
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4.2 Conduction Shape Factor

Two-dimensional heat transfer in a medium bounded by two isothermal surfaces at

T, and T, may be represented in terms of a conduction shape factor, S.

: 1
Q =Sk (Tl - Tz) Rthermal - k—
Plane wall: Q =kA AT => S= LY
AX AX L
Hollow cylinder: Q = 2rLlK \7 = g= 2ZE
|n(l'2/r1) In(rzlrl)
: drrr, Kk A7t r
Hollow sphere: = TP AB R AT = g=27nb
I, -n r, -,
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Hornizontal circular cylinder
of length L midway
between parallel planes of
equal length and mfimite
width

Circular cylinder of length
L centered in a square solid
of equal length

Eccentric circular cylinder
of length L m a cylinder of
equal length
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Conduction throngh the edge
of adjoining walls

Conduction through corners of
three walls with a temperature
difference of AT,_5 across the
walls

Disk of diameter Dand Tl on a
semi finite medium of thermal
conductivity kand T
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Example 1

A small furnace, 50 x 60 x 70 cm on the inside, is constructed of fireclay brick (k =
1 W/m.K) with a wall thickness of 10 cm. The inner and outer surfaces are

maintained at 500 °C and 50 °C, respectively. Calculate the heat loss.

Qtotal — Qcorners + Qedges + Qwalls
Qcorners =(8) (0.15) (0.1) (1.04) (500 -50) =56 W

Qedges = (4) (1.04) (500 - 50) (0.54) [(0.5) + (0.6) + (0.7)] =1820 W

(0.5) (0.6) + (0.6) (0.7) + (0.5) (0.7)
0.1

Qeages = (2) (1.04) (500 - 50) { } = 10015 W

Q,. =0.056+1.82+10 = 12 kW
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Example 1

A small furnace, 50 x 60 x 70 cm on the inside, is constructed of fireclay brick (k =
1 W/m.K) with a wall thickness of 10 cm. The inner and outer surfaces are

maintained at 500 °C and 50 °C, respectively. Calculate the heat loss.

Qtotal - Qcorners + Qedges + Qwalls

Show that Q= 0.056 + 1.82 + 10 = 12 kW
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