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3. Steady, One-dimensional Heat Conduction

Steady state: Temperature does not vary with time.

One dimensional: Temperature is a function of one dimension only, such as x.

3.1  Slab with constant properties, such as k

Differential equation

with heat generation:
gen

d dT
k  + e  = 0

dx dx

 
 
 

Note that the partial differentials no longer exist

which makes the solution simple.

The heat generation term can be a constant or a

function of position (space variable) x.

The solution depends on the BC’s that are used to to find the const. of integration.
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𝒅

𝒅𝒙
𝒌
𝒅𝑻

𝒅𝒙
= 𝟎

𝒅𝟐𝑻

𝒅𝒙𝟐
= 𝟎

Differential equation

without heat generation:
for constant k

Example 1

Determine T(x) and q for a slab with boundary

surfaces at x = 0 and x = L are kept at uniform

temperatures T1 and T2, respectively (no heat

generation).

𝒅𝟐𝑻

𝒅𝒙𝟐
= 𝟎 𝒊𝒏 𝟎 ≤ 𝒙 ≤ 𝑳 𝑻 𝒙 = 𝑪𝟏 𝒙 + 𝑪𝟐

BC’s: at x = 0 T(0) = T1 => C2 = T1

2 1
1

T  - T
C  = 

L
at  x = L   T(L) = T2 =>  

2 1
1

T  - T
T(x) =  x + T

L
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Heat flux:
1 2T  - TdT

q = - k  = k 
dx L

 
 
 

Independent of x

Heat flow rate: 1 2T  - T
Q = q A = k A 

L

 
 
 

Independent of x

If there is no heat generation, heat flux q and heat flow rate Q are independent of

position (x) (any geometry). Therefore, q and Q can be found by solving the Fourier

equation only, taking q and/or Q constant (not a function of x).

Re-solve

the Example

2

10

dT
q = - k     =>    q dx = - k dT      =>     q dx = - dT               

dx

TL

T

 

2

1

1 2 1 2

0

T  - T T  - T
q dx = - dT    =>    q = k     =>    Q = 

LL

k A

TL

T

 
 
 

 
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1 2 1 2T  - T T  - T
Q = k A  = 

LL

k A

1 2T  - T
q = k 

L

 
 
 

2 1
1

T  - T
T(x) =  x + T

L
Temperature profile:

Heat flux

Heat flow rate:
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Example 2

Determine T(x) and q(x) for a slab with uniform heat generation, egen in W/m3. The

boundary at surface x = 0 is kept at a uniform temperature T1 and the boundary at

x = L dissipates heat by convection into an environment at a constant temperature

T∞ with convective heat transfer coefficient h.

Differential equation:
2

gen

2

ed T
 +  = 0    in    0  x  L

kdx
 

Boundary conditions: 1.   T(0) = T1 at    x = 0

2.
dT

 k  + h T(x) = h T    at   x = L
dx



Solution:
gen

1

edT
  = -  x + C

dx k

gen 2

1 2

e
 T(x) = -  x  + C  x + C

2 k
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Apply Boundary conditions:

From (1): C2 = T1

From (2):
   

 
gen1

1

e  L 2 k + h LT  - T  h
C  =  + 

k + h L 2 k k + h L



   

 
gen gen12

1

e e  L 2 k + h LT  - T  h
 T(x) = -  x  +  +  x + T

2 k k + h L 2 k k + h L


 
 
  

This is a parabolic distribution
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Define a non-dimensional parameter called Biot number:

22

gen1
1

e  LT  - T x 1 + 2 / Bi x x
 T(x) - T  =   +      - 

1 + 1/ Bi L 2 k 1 + 1 / Bi L L


      
     
       

h L
Bi = 

k

gen 1

dT
 q(x) = - k  = e  x - C  k

dx
Heat flux: Heat flux is a function of x

We shall return to the importance of the Biot number later on.
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Jean-Baptiste Biot

French Scientist

1774 - 1862
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Note the following: When there is heat generation in the medium, the heat flux

varies with position.

For most practical problems, the amount of heat flow at the boundaries is of

interest.

Examine the cases when Bi -> ∞ and when Bi -> 0:

When Bi -> ∞ then h -> ∞ and the boundary condition reduces to T(L) = T∞

When Bi -> 0 then h -> 0 and the boundary condition reduces to dT/dx = 0.

That means that there is no heat flow through that surface at x = 0.
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Example 3

Consider an infinite plane wall (slab) 2 L thick, in which there is uniform volumetric

heat generation rate, q’’’. The wall surfaces are maintained at T = T1 at x = - L and

T = T2 at x = + L. For constant thermal conductivity k, steady-state operating

conditions, and defining the origin of the x coordinate from the centerline of the

plane, show that the solution of the general conduction equation for the

temperature distribution (profile) in the wall is

𝑻 𝒙 =
𝒒′′′𝑳𝟐

𝟐 𝒌
𝟏 −

𝒙

𝑳

𝟐

+
𝑻𝟐− 𝑻𝟏

𝟐

𝒙

𝑳
+
𝑻𝟏+ 𝑻𝟐

𝟐
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3.2  Cylinder with constant properties, such as k

Solid cyclinder Hollow cyclinder

Differential equation

gene1 d dT
 r  +  = 0

r dr dr k

 
 
 

Heat flux
dT(r)

q = - k 
dr

If positive, heat flow is in

the positive r direction
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For a solid cylinder, the solution of the differential equation requires two boundary

conditions at r = 0 and at r = b.

The boundary condition at r = b can be of any kind. For steady state , it cannot be

an insulated surface BC. (Why?)

The boundary condition at the centre (r = 0)

is implicit. It is known as the symmetry

condition. (Symmetry of what?):

dT
At r = 0     = 0

dr

               or T is finite

Example 4

Determine T(r) and q(b) for a solid cyclinder with uniform heat generation, egen in

W/m3. The boundary at surface r = b is kept at a uniform temperature T1.
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Differential equation:
gene1 d dT

 r  +  = 0    in    0  r  b
r dr dr k

 
  

 

Boundary conditions: 1.   T(b) = T1 at    r = b

dT
  = 0    at   r = 0

dr

Solution: gen gen 2

1

e ed dT dT
 r  = -  r     =>     r  = -  r  + C
dr dr drk k

 
 
 

2.

gen gen 21
1 2

e eCdT
 = -  r +      =>     T(r) = -  r  + C  ln(r) + C

dr 2 k r 4 k

Apply Boundary conditions:

From (2): C1 = 0

From (1):
gen 2

2 1

e
C  = T  +  b

4 k
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Temperature profile has a parabolic distribution:

gen gen2 2

w

e e
T(r) = -  r  +  b  + T

4 k 4 k

Heat flux at the surface r = b:

gen gen

r=b
r=b

e e  bdT
q(r)  = - k  = - k -  b  = 

dr 2 k 2

 
 
 
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Example 5

Determine T(r) and the radial heat flow rate Q for a length L in a hollow cylinder

with constant rate of heat generation, egen when the boundary at surfaces at r = a

and r = b are kept at uniform temperatures Ta and Tb, respectively.

Differential equation:

gene1 d dT
 r  +  = 0    in    a  r  b

r dr dr k

 
  

 

Boundary conditions: 1.   T(a) = Ta at    r = a

2.   T(b) = Tb at    r = b

Solution:
gen 2

1 2

e
T(r) = -  r  + C  ln(r) + C

4 k
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Apply boundary conditions:

   

   

gen 2 2

b a
gen 2

2

gen gen 2 2

a b a

e
T  - T  + b  - ae 4 kT(r) = -  r  +  ln(r) + 

b4 k
ln

a

e  a e ln(a)
          T  +  - T  - T  + b  - a  

b4 k 4 k
ln

a

 
 
 

   
        

 
 

The radial heat flow rate at any position r through the cylinder for a length of H is:

gen 2

1

edT
Q(r) = q(r) (Area) = - k  ( 2  r L) = 2  L  r  - C  k  

dr 2
 

 
 
 

Show that if there is no heat generation, the heat flow rate is independent of the

radial position r.
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3.3  Sphere with constant properties, such as k

Differential equation
gen2

2

e1 d dT
 r   +  = 0
dr dr kr

 
 
 

Heat flux
dT(r)

q = - k 
dr

The considerations for the boundary conditions

(such as symmetry at r = 0) is the same as that of

a cylinder.
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Example 6

Determine T(r) and the total radial heat flow rate Q in a hollow sphere when the

surfaces at r = a and r = b are kept at uniform temperatures Ta and Tb, respectively.

(No heat generation.)

Differential equation:
2d dT

r   = 0    in    a  r  b
dr dr

 
  

 

Boundary conditions: 1.   T(a) = Ta at    r = a

2.   T(b) = Tb at    r = b

Solution:
2 2 1

1 2

Cd dT dT
r   = 0    =>    r   = C     =>    T(r) = -  + C

dr dr dr r

 
 
 

Apply boundary conditions:
1 1

a 2 b 2

C C
T  = -  + C        T  = -  + C

a b
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Apply boundary conditions:   b a
1 a b 2

b T  - a Ta b
C  =  T  - T          C  = 

a - b b - a

a b

1 b a
T(r) = a T   - 1  + b T  1 - 

b - a r r

    
    
    

Temperatute profile:

Radial heat flow rate:  2

1

dT
Q = q(r) (Area) = - k  4  r  = - 4  k C

dr
 

 a b

a b
Q = 4  k  T  - T

a - b


Q is independent of position, i.e., it can be found with Fourier equation only, as

before.
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3.4  The Concept of Thermal Resistance

The total heat flow rate through a solid can be related to thermal resistance if these

assumptions are true:

 One-dimensional, steady-state heat conduction;

 Finite regions;

 No heat generation;

 Constant thermal conductivity; and

 Prescribed temperatures at the boundaries.

If so, then where
T

Q = 
R



 ΔT: Difference between temperatures at the

boundaries

 R: Thermal resitance in °C / W
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The thermal resistance is analogous to electrical resistance defined by:

Electric potential difference V
Current =       I =  

Electric resistance R


Similarly:

3.4.1  For the Slab

1 2 1 2T  - T T  - T
Q = A k  = 

LL

A k

slab

L
R  = 

A k

From Example 1

T
Q = 

R


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Slab with convective boundaries

  ,1 1

1 ,1 1

1

T  - T
Q = A h  T  - T  = 

1

A h





1 2 1 2T  - T T  - T
Q = A k  = 

LL

A k

 
 
 

  2 ,2

2 2 ,2

2

T  - T
Q = A h  T  - T  = 

1

A h





Note that it is the same Q.
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Example 7

A furnace wall 200 mm thick is made of a material having thermal conductivity of

1.45 W/m.K. The inner and outer surface are exposed to average temperatures of

3500 °C and 400 °C, respectively. If the gas and air film coefficients are 58 and

11.63 W/m2.K, respectively, find the rate of heat transfer through a wall of 2.5 square

meters. Also, find the temperatures on the two sides of the wall.

,1 ,2

1 2

T  - T 350 - 40
Q =  =  

1 L 1 1 0.2 1
 +  +  +  + 

A h A k A h (2) (58) (2) (1.45) (2) (11.63)

    = 3214 W 

 

1 ,1 1 1

2 2 ,2 2

Q = 3214 W = A h  (T  - T ) = (2) (58) (350 - T )

                     = A h  (T  - T ) = (2) (11.63) (T  - 40)





T1 = 327.84 °C

T2 = 150.5 °C
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Steady, one-dim. heat conduction

through multi-layered slabs:

ሶ
ሶ𝑸𝐜𝐨𝐧𝐝 = 𝒌𝟏 𝑨

𝑻𝟏− 𝑻𝟐
𝑳𝟏

= 𝒌𝟐 𝑨
𝑻𝟐− 𝑻𝟑
𝑳𝟐

𝑹𝐜𝐨𝐧𝐝 = 𝑹𝟏+ 𝑹𝟐 =
𝑳𝟏
𝒌𝟏 𝑨

+
𝑳𝟐
𝒌𝟐 𝑨

ሶ
ሶ𝑸𝐜𝐨𝐧𝐝 =

𝑻𝟏− 𝑻𝟐
𝑳𝟏/𝒌𝟏 𝑨

=
𝑻𝟐− 𝑻𝟑
𝑳𝟐 /𝒌𝟐 𝑨

ሶ
ሶ𝑸𝐜𝐨𝐧𝐝 =

𝑻𝟏− 𝑻𝟐
𝑹𝟏

=
𝑻𝟐− 𝑻𝟑
𝑹𝟐

=
𝑻𝟏− 𝑻𝟑
𝑹𝟏+ 𝐑𝟐
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Steady, one-dimensional heat conduction through multi-layered slabs:

ሶ
ሶ𝑸𝐜𝐨𝐧𝐝 =

𝑻𝟏− 𝑻𝟐
𝑹𝐭𝐨𝐭𝐚𝐥

ሶ𝑹𝐭𝐨𝐭𝐚𝐥 = 𝑹𝐀+
𝟏

𝟏
𝑹𝐁

+
𝟏
𝑹𝐂

+ 𝑹𝐃
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3.4.2  For the Hollow Cylinder

From Example 4
gen 2

1

e
Q = 2  L  r  - C  k

2


 
 
 

cyl

b
ln

a
R  = 

2  L k

 
 
 

gen 1e  = 0    =>   Q = 2  L (- C  k)

b a
1

T  - T
C  =      =>

b
ln

a

 
 
 

 a b

2  L
Q =  T  - T

b
ln

a



 
 
 
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This can be re-arranged to take a similar form as that of a slab:

cyl

cyl

cyl

L
R  = 

A  k

Where: Lcyc = b – a Thickness of the cylinder

b a
cyl

b

a

A  - A
A  = 

A
ln

A

 
 
 

Logarithmic mean area

bA  = 2  b L

aA  = 2  a L
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Hollow cylinder with convective boundaries

  ,1 1

1 1 ,1 1

1 1

T  - T
Q = A  h  T  - T  = 

1

A  h





1 2 1 2

2 2

1 1

T  - T T  - T
Q = 2  k L  = 

r r
ln ln

r r

2  k L





 
 
 

        
    

  2 ,2

2 2 2 ,2

2 2

T  - T
Q = A  h  T  - T  = 

1

A  h





Note that it is the same Q.
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Example 8

A steam pipe of inner diameter 200 mm is covered with 50 mm thick high insulated

material of thermal conductivity k = 0.01 W/m.°C. The inner and outer surface

temperatures maintained at 5000 °C and 1000 °C, respectively. Calculate the total

heat loss per meter length of pipe?

 
1 2

2

1

T  - T 500 - 100
Q =  =  = 61.98 W

r 0.15lnln 0.1r
2  (0.01) (1)

2  k L




 
 
 

1

2

200
r  =  = 100 mm

2

200 100
r  =  = 150 mm

2


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3.4.3  For the Hollow Sphere

From Example 5  a b

a b
Q = 4  k  T  - T

b - a


sph

1 b - a
R  =  

4  k a b

This can ve re-arranged:
sph

sph

g

L
R  = 

A  k

Where: Lsph = b – a Thickness of the sphere

g a bA  = A  A Geometric mean area

2

bA  = 4  b 2

aA  = 4  a
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Example 9

A spherical shaped vessel of 1.2 m diameter is 100 mm thick. Find the rate of heat

leakage, if the temperature difference between the inner and outer surface is 200

°C. Thermal conductivity of the material of sphere is 0.3 kJ/h.m.°C.

 

 

a b

a b
Q = 4  k  T  - T

b - a

(0.5) (0.6)
    = 4  (0.3)  200  = 2262 kJ/h

0.6 - 0.5





1.2
b =  = 0.6 m

2

1.2 - (2) (0.1)
a =  = 0.5 m

2
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3.5  Composite Medium

If heat transfer takes place through a medium composed of several different layers,

connected in parallel or in series, with the same or different thermal conductivities,

the rate of heat flow can be calculated using the thermal resistance concept.

In addition to the previous assumptions, add the following:

 Perfect thermal contact (no temperature drop at the interfaces of the layers);

 Interior and exterior surafces of the structures are subjected to convective heat

transfer to fluids at constant mean temepratures T∞,1 and T∞,2, and with convective

heat transfer coefficients h1 and h2.
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3.5.1  Slabs Connected in Parallel
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The heat transfer rate, Q, through an area A of this composite structure is the same

through each layer.

   2 31 2
1 ,1 1 1 2 2 3 ,2

1 2

T  - TT  - T
Q = A h  T  - T  = A k   = A k   = A h  T - T

L L
 

In terms of thermal resistances:

,1 1 3 ,22 31 2

1 2

1 21 2

T  - T T - TT  - TT  - T
Q =  =  =  = 

1 L L 1

A h A hA k A k

 

,1 1 3 ,22 31 2

1 2 3 4

T  - T T - TT  - TT  - T
Q =  =  =  = 

R R R R

 
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Define total resistance, R = R1 + R2 + R3 + R4

,1 1 3 ,2 ,1 ,22 31 2

1 2 3 4 total

T  - T T - T T  - TT  - TT  - T
Q =  =  =  =  = 

R R R R R

   

Define Overall Heat Transfer Coefficient, U:

  ,1 ,2 ,1 ,2

,1 ,2

total

T  - T T  - T
Q = A U T  - T  =  = 

1 R

A U

   

 

1 2total

1 1 2 2

1 1
U =  = 

L L1 1A R
 +  +  + 

h k k h
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3.5.2  Slabs Connected in Series

B CL  = L

A B C DA  = A  + A  = A

1 2

total

T  - T
Q = 

R

total A D

B C

1
R  = R  +  + R

1 1
 + 

R R
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Example 10

A composite wall consists of three layers of thicknesses 300 mm, 200 mm and 100

mm with thermal conductivities 1.5, 3.5, and is W/m.K, respectively. The inside

surface is exposed to gases at 1200 °C with convection heat transfer coefficient as

30 W/m2.K. The temperature of air on the other side of the wall is 30 °C with

convective heat transfer coefficient 10 W/m2.K. If the temperature at the outside

surface of the wall is 180 °C, calculate the temperature at other surface of the wall,

the rate of heat transfer, and the overall heat transfer coefficient.
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3.5.3  Coaxial Cylinders

,1 ,2

total

T  - T
Q = 

R

 

conv,1

1 1

1
R  = 

2  r  L h

2

1

cyl,1

1

r
ln

r
R  = 

2  L k

 
 
 
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,1 ,2

total

T  - T
Q = 

R

 

conv,1

1 1

1
R  = 

2  r  L h

2

1

cyl,1

1

r
ln

r
R  = 

2  L k

 
 
 

conv,2

4 2

1
R  = 

2  r  L h

3

2

cyl,2

2

r
ln

r
R  = 

2  L k

 
 
 

4

3

cyl,3

3

r
ln

r
R  = 

2  L k

 
 
 

total conv,1 cyl,1 cyl,2 cyl,3 conv,2R  = R  + R  + R  + R  + R

The overall heat transfer coefficient, U, can be defined in two ways:

1

1 total 1 total

1 1
U  =  =          based on interior surface area

A  R 2  r  L R

2

4 total 4 total

1 1
U  =  =         based on outer surface area

A  R 2  r  L R
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For most engineering problems, the overall heat transfer coefficient, U, is based on

the external (outer) surface area because the outer diameter can be easily

measured.

2

4 total 4 total

1 1
U  =  =  

A  R 2  r  L R

2

34 4 2 4 4 4

1 1 1 1 2 2 3 3 2

1
U  = 

rr r r r r r1 1
  +  ln  +  ln  +  ln  + 

r h k r k r k r h

    
    

     
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Example 11

A steel tube of 5 cm ID (inner diameter) and 7 cm OD (outer diameter) is covered

with 2.5 cm layer of insulation. The inside surface of the tube receives heat by

convection from a hot gas while the outer surface of the insulation is exposed to the

ambient air. Determine

a) The heat loss to the ambient air per 3 m length of the tube; and

b) The temperature drops across the tube material and the insulation layer.

Data:
,1T  = 300 C



,2T  = 30 C


2

1h  = 284 W/m .K

2

2h  = 17 W/m .K

Neglect radiation.
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(a) Radial heat flow

through the tube:

,1 ,2

total

T  - T
Q = 

R

 

total conv,1 cyl,1 cyl,2 conv,2R  = R  + R  + R  + R

 
-3

conv,1

1 1

1 1
R  =  =  = 7.47 10  C / W

2  r  L h 2  0.025  (3) (284) 

 
-2

conv,2

2 2

1 1
R  =  =  = 5.35 10  C / W

2  r  L h 2  0.035 + 0.025  (3) (17) 

 2

1 -4

cyl,1

1

r
3.5ln lnr 2.5

R  =  =  = 4.13 10  C / W
2  L k 2  (3) (43.26) 

 
 
 

 3

2 -1

cyl,2

2

r (3.5+2.5)ln lnr 3.5
R  =  =  = 1.375 10  C / W

2  L k 2  (3) (0.208) 

 
 
 
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total conv,1 cyl,1 cyl,2 conv,2R  = R  + R  + R  + R  = 0.197 C / W

,1 ,2

total

T  - T 300 - 30
Q =  =  = 1368 W

R 0.197

 

(b) Temperature drops

   
-4

cyc,1

tube ,1 ,2

total

R 4.13 10
T  =  T  - T  =  300 - 30  = 0.564 C

R 0.197
 



   
-1

cyc,2

ins ,1 ,2

total

R 1.375 10
T  =  T  - T  =  300 - 30  = 188 C

R 0.197
 



Note the 

difference in 

temperature 

drop
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Example 12

A nuclear fuel rod assembly,

consists of an outer cladding

and the inner nuclear material,

as shown in the figure.

(a) Determine the temperature

at the assembly surface (in °C)

(b) Determine the temperature

at the interface between the

inner nuclear material and the

outer cladding (in °C)
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3.5.4 Cocentric Spheres

i o 2 3 3 oi 1 1 2

total 1 2 3 4

T  - T T  - T T  - TT  - T T  - T
Q =  =  =  =  = 

R R R R R

T1 T2 T3

1 2

1 i

1
R  = 

4  r  h

2 1
2

1 2 1

r  - r1
R  =  

4  k r  r

r


3 2

3

2 3 2

r  - r1
R  =  

4  k r  r
4 2

3 0

1
R  = 

4  r  h
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For most engineering problems, the overall heat transfer coefficient, U, is based on

the external (outer) surface area because the outer diameter can be easily

measured.

0 2

o total 3 total

1 1
U  =  =  

A  R 4  r  R

o 2 2 2

3 3 3 2 32 1

2

1 1 2 1 2 3 2 01

1
U  = 

r r r  - r rr  - r1 1
   +   +   + 

h k r  r k r  r hr
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Example 13

A 17 m internal diameter spherical tank made of 2

cm thick stainless steel (k = 15 W/m.K) is used to

store iced water at T∞,1 = 0 ⁰C. the tank is located in

a room whose temperature is T∞,2 = 22 ⁰C. The

walls of the room are also at 22 ⁰C. The outer

surface of the tank is black and heat transfer

between the outer surface of the tank and the

surroundings is by natural convection and radiation.

The convection heat transfer coefficients at the inner and the outer surfaces of the

tank are h1 = 80 W/m2.K and h2 = 10 W/m2.K, respectively. Determine the rate of

heat transfer to the iced water in the tank.
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The thermal resistance network for this

problem is in the Figure.

Inner diameter: D1 = 3 m

Outer diameter D2 = 3.04 m

Inner surface area: A1 = π D2
1 = 28.3 m2

Outer surface area: A2 = π D2
2 = 29 m2c

The radiation heat transfer coefficient is given by:
2 2

r 2 ,2 2 ,2h  =   (T  + T ) (T  + T ) 
 

T2

T2 is unkown. In order to calculate, hr, a trial-and–error procedure is necessary.



ME – 212   THERMO-FLUIDS ENGINEERING II

Prof. Dr. Faruk Arınç Spring 2013

Assume value for T2, check this assumption later, and repeat the calculations if

necessary using a revised value of T2.

Note that T2, must be between 0 ⁰C and 22 ⁰C, and closer to 0 ⁰C since the heat

transfer coefficient inside the tank is much larger.

Take T2 = 5 ⁰C = 278 K. Then

   2 2 -8 2 2

r 2 ,2 2 ,2

2

h  =   (T  + T ) (T  + T ) = (1) (5.67 10 ) (295)  + (278)  295  278

    = 5.34 W/m .K

 
 



The other thermal resistances are:

i conv,1

1 1

1 1
R  = R  =  =  = 0.000442 C/W

h  A (80) (28.3)

2 1
1 sph

1 2

r  - r 1.52 - 1.50
R  = R  =  =  = 0.000047 C/W

4  k r  r 4  (15) (1.52) (1.50) 
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0 conv,2

2 2

1 1
R  = R  =  =  = 0.00345 C/W

h  A (10) (29)

rad

r 2

1 1
R  =  =  = 0.00646 C/W

h  A (5.34) (29)

Parallel resistances, R0 and Rrad, can be replaced by an equivalent resistance:

eq 0 rad

1 1 1 1 1
 =  +  =  +  = 444.7 W/ C

R R R 0.00345 0.00646 eqR  = 0.00225 C/W

tot i 1 eqR  = R  + R  + R  = 0.000442 + 0.000047 + 0.0025 = 0.00273 C/W

,2 ,1

tot

T  - T 22 - 0
Q =  =  = 8029 W

R 0.00274

 
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To check the validity of our original assumption (T2 = 5 ⁰C), determine the outer

surface temperature from

,2 2

2 ,2 eq

eq

T  - T
Q =      =>     T  = T  - Q R  = 22 - (8029) (0.00225) = 4 C

R





The calculations need not to be repeated with T2 = 4 ⁰C. Why?
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3.6  Thermal Contact Resistance

If two solids are not

metallurgically bonded

together, the anlarged

view is as shown in the

Figure.
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The heat transfer across the actual contact points and the small air (gas) gaps is

mainly by conduction. Radiation is negligible at room temperatures.

The thermal conductivity of a gas (air) is smaller than that of a solid. Therefore, the

rate of heat flow is reduced due to the presence of stagnant gas in the gaps. The

extra resistance to heat flow is called thermal contact resistance.

The interface thermal conductance h in W/m2.K is determined by experiments. The

reciprocal of h, 1/h, is called specific thermal contact resistance. Rcont.

h increases with increasing interface pressure (increased solid to solid contact

area) and decreases with increasing surface roughness and waviness.
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Example 14

Calculate

(a) The heat lost per m2 area;

(b) The temperature drop at the

interface.

A boiler wall is made up of two layers, A and B. Thickness and thermal conductivity

of A are LA = 240 mm and kA = 0.2 W/m.⁰C, respectively. For B, thickness and

thermal conductivity are LB = 525 mm and kB = 0.3 W/m.⁰C, respectively. Inner

surface of A is maintained at T1 = 1000 ⁰C and outer surface of B is maintained at T4

= 250 ⁰C. There is a contact thermal resistance of Rcont = 0.050 ⁰C/W per unit area

existing at the interface.
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3 41 2 1 4

A B A B
cont

A B A B

T  - TT  - T T  - T
q =  =  =  

L L L L
 + R  + 

k k k k

Heat flux:

21 4

A B
cont

A B

T  - T 1000 - 250
q =  =  = 250 W/m

L L 0.24 0.525
 + 0.05 +  + R  + 

0.2 0.3k k

1 2 2
2

A

A

T  - T 1000 - T
250 =  =      =>     T  = 700 C

L 0.24

0.2k

3 4 3
3

B

B

T  - T T  - 250
250 =  =      =>     T  = 687.5 C

L 0.525

0.3k
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3.7  Variable Thermal Conductivity

If we have a solid whose thermal conductivity strongly varies with temperature or if

temperature differences are quite large, then this dependence has to be accounted

for. In general, the solutions are complicated, but for one dimensional, steady state

case, they are straight forward and relatively easier.

3.7.1  Slab with  Variable Thermal Conductivity

k(T)

Differential Equation:
d dT

k(T)  = 0
dx dx

 
 
 

Boundary Conditions:
0

1

(1)   T = T    at x = 0

(2)   T = T    at x = L

Question: Q = ?
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Solution:
dT

k(T)  = C      =>     k(T) dT = C dx 
dx

If k(T) is a known function of temperature, the distribution, T(x), can easily be found.

Fourier’s law:
dT

Q = A q = - A k(T)  = - A C      constant
dx

Integrate both sides to find C:

1 1

0 00

- 1
k(T) dT = C dx = C L      =>     C =  k(T) dT

L

T TL

T T

  

If k(T) is a linear function of temperature such as 0k(T) = k  (1 +  T) 

1

0

0 1 0 1
0 0

T  + T T  - TA
Q =  k  (1 +  T) dT = A k  1 +  

L 2 L

T

T

 
  
   
   


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If mean thermal conductivity is defined as
0 1

m 0

T  + T
k  = k  1 +   

2


 
 
 

0 1
m

T  - T
Q = A k  

L

 
 
 

This is the same solution as before except that k is

evaluated at the arithmetic mean temperature.
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Example 15

Determine the heat flux across 15 cm thick slab when one face is kept at T1 = 500 K

an the other face at T2 = 300 K. The thermal conductivity varies linearly wlth

temperature as k(T) = k0 (1 + β T) where k0 = 0.0346 W/m.K and β = 0.0036 K-1.

1 2 1 2
0

2

T  + T T  - T
q = k  1 +  

2 L

500 + 300 500 - 300
    = (0.0346) 1 + (0.0036  

2 0.15

    = 112.57 W/m


  
   
   

    
    
    
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Example 16

A wafer of silicon, 3 mm thick and 2 cm square, is used in an electronic device.

One side of the device is held at 85 °C and the other is held at 25 °C. The thermal

conductivity of silicon varies with temperature as k = k0 (1 + β T), where k0 = 15

W/m.K, β = 0.00556 °C-1, and T is in °C.

(a) Determine the HT rate (in W) if k is evaluated at its average temperature.

(b) Determine the HT rate (in W) if the temperature dependence of k is taken into

account.
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3.7.2  Hollow Cylinder with  Variable Thermal Conductivity

Differential Equation:
d dT

r k(T)  = 0
dr dr

 
 
 

Boundary Conditions:
a

b

(1)   T = T    at r = a

(2)   T = T    at r = b

Question: Q = ?

Solution:
dT dr dr

r k(T)  = C     =>    k(T) dT = C     =>     k(T) dT = C 
dr r r

b

a

T b

T a

 

 
- 1

C =  k(T) dT
bln

a

b

a

T

T


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dT C
Q = 2  r L q =  - 2  r L k(T)  = - 2  r L  = - 2  L C

dr r
   

 
 
 

 
2  L

Q =  k(T) dT
bln

a

b

a

T

T


 If k(T) is known, Q is calculated, easily.

3.8  One-dimensional Fin Equation

Thins trips of metals called fins (or extended surfaces) are attached to the surface

of a solid to inrease the heat transfer area and hence the heat transfer by

convection between the surface and the fluid surrounding it.

Fins are generally used on the surface where the convective heat transfer

coefficient is low. Example: car radiator.
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Examples of Extended Surfaces - Fins

Straight Fins

uniform and non-uniform cross section

Annular Fin Pin Fin
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Newton’s Law of Cooling:

.

Q  = A h (T  - T )conv s 

Two ways to increase the rate of 

heat transfer:

 increasing the heat transfer 

coefficient;

 increase the surface area

fins
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3.9  Temperature Distribution and Heat Flow in Fins of Uniform Cross Section

Under steady-state conditions, the 

energy balance on this volume can 

be expressed as

Rate of heat Rate of heat

conduction into  = conduction from

the element at x the element at x+ x

Rate of heat

                                  + convection from

the element

   
   
   
      

 
 
 
 
 

. . .

, ,Q  = Q  + cond x cond x x convQ
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. . .

, ,

.

,  + h (p x) (T - T )

Q  = Q  + 

           = Q

cond x cond x x conv

cond x x

Q





  where  p  is the perimeter

. .

, ,
= h p (T - T )

Q  - Q
 

x

cond x x cond x







As  Δx  goes to zero:

.

dQ
 = h p (T - T )

d x

cond



From Fouries’ Law:
. d T

Q  = - k A  
d x

cond c

d d T
k A   - h p (T - T ) = 0

d x d x
c 

 
 
 

where  Ac is the cross-sectional

area
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 
d d T(x)

k A   - h p T(x) - T  = 0
d x d x

c 

 
 
 

defining:   θ(x) = T(x) – T∞ and   
h p

m = 
k Ac

For constant cross section,  Ac,  and thermal conductivity,  k, and  

2
2

2

d θ 
 - m  θ = 0

d x

General Solution:
m x - m x

1 2θ(x) = C  e  + C  e

The constants, C1 and C2, are to be determined from boundary conditions 
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Fin Equation:
2

2

2

d θ 
 - m  θ = 0

d x

General Solution(s): m x - m x

1 2θ(x) = C  e  + C  e

3 4θ(x) = C  cosh(m x) + C  sinh(m x)

   5 6
θ(x) = C  cosh m (L - x)  + C  sinh m (L - x)

Which general solution is used depends on the given boundary conditions. Use the 

one which is easier to apply the BC’s to determine the constants.

Remember the definitions to be used to convert one solution to the other.

e  + e e  - e
cosh(x) =      and     sinh(x) = 

2 2

x x x x 

θ(x) = T(x) – T∞ and   
h p

m = 
k Ac
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Boundary Conditions

At the fin base (x = 0): θ(0) = θ  = T  - Tb b 

h
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3.9.1  Infinitely(!) Long Fin fin tip
T   T




For a sufficiently long fin, the temperature at 

the fin tip approaches the ambient 

temperature, i.e., T(L) => T∞

The boundary condition becomes

θ(x ) = T(L) - T   0


 

Question: How long is “long”?

k A
L  5 

h p
c
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Infinitely(!) Long Fin fin tip
T   T




Fin Equation:
2

2

2

d θ 
 - m  θ = 0

d x

General Solution: m x - m x

1 2θ(x) = C  e  + C  e

Boundary Conditions:

bθ(0) = θ  = T  - Tb 

θ(x ) = T(L) - T  = 0


 2  C   0 

1 b  C  = θ  = T  - Tb 


- m x

bθ(x) = θ  e 

h p
- x 

k A- m xT(x) - T
 = e  = e

T  - T
c

b





h p
m = 

k Ac



ME – 212   THERMO-FLUIDS ENGINEERING II

Prof. Dr. Faruk Arınç Spring 2013

Infinitely(!) Long Fin
fin tip

T   T




- m x

bθ(x) = θ  e 

h p
- x 

k A- m xT(x) - T
 = e  = e

T  - T
c

b





Total rate of heat transfer from the fin:

.

0

Q  = h p θ(x) dx
x

x







.

0

d θ
Q  = - A  k  

d x
c

x

Both equations should give the same result:

.

Q  = A  k θ  m = θ  p h k A  

                      = (T  - T ) p h k A

c b b c

b c
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3.9.2  Fin with Adiabatic Tip (negligible heat flow at the tip)

Fin Equation:
2

2

2

d θ 
 - m  θ = 0

d x

General Solution:

Boundary Conditions:

θ(0) = θ  = T  - Tb b 

d θ
 = 0

d x x L

4 C   0 

3

θ
 C  = 

cosh(m L)

b

   3 4
θ(x) = C  cosh m (L - x)  + C  sinh m (L - x)

 cosh m (L - x)
θ(x) = θ   

cosh(m L)
b
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Total rate of heat transfer from the fin:

.

0

d θ
Q  = - A k  

d x x

.

Q  = θ  m A  k tanh(m L) 

    = (T  - T ) p h k A  tanh(m L)

b c

b c

Fin with Adiabatic Tip (negligible heat flow at the tip)

 cosh m (L - x)
θ(x) = θ   

cosh(m L)
b

Temperature profile:
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3.9.3  Fin with Convection at the Tip

Fin Equation:

2
2

2

d θ 
 - m  θ = 0

d x

General Solution:

Boundary Conditions:

θ(0) = θ  = T  - Tb b 

tip

x=L

d θ
k  + h  θ(L) = 0

d x

   3 4
θ(x) = C  cosh m (L - x)  + C  sinh m (L - x)

   tip

tip

h
cosh m (L - x)  +  sinh m (L - x)  

m kθ(x) = θ   
h

cosh(m L) +  sinh(m L)
m k

b

htip is not necessarily

equal to h
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Fin with Convection at the Tip

A practical way of accounting for the 

heat loss from the fin tip is to replace 

the fin length L in the relation for the 

insulated tip case by a corrected 

length defined as

A
L  = L + 

p
c

c

c,rectangular

t
L   L + 

2


c,cylindrical

D
L   L + 

4

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3.10  Fin Efficiency

.

.

,max

Actual Heat Transfer Rate from the Fin

Ideal Heat Transfer Rate from the Fin
if the entire fin were at the base temperature

 =  = fin

fin

fin

Q

Q



.

 =  h A  (T  - T )fin fin fin bQ 


To maximize the heat transfer from a fin, the 

temperature of the fin should be uniform (maximized) 

at the base value of Tb .

In reality, the temperature drops along the fin, and 

thus the heat transfer from the fin is less.

To account for the effect, we define a fin efficiency:
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In most cases, fins have variable  cross sectional areas and that makes the solution 

complicated. For a variety of fin geometries the calculations are presented in terms 

the fin efficiency.

.

b =  h A  (T  - T ) =  h A  θfin fin fin b fin finQ  


For the case of a fin with negligible heat flow at the tip:

Where p = Perimeter of the fin  and  L = Length of the finA  = p Lfin

.

b = p L h θidealQ  
.

b fin = θ  p h k A  tanh m L     as found beforefinQ

 b finfin

bideal

θ  p L k A  tanh m LQ
 =  = 

θ  p L hQ
fin

 tanh m L
 = 

m L
fin
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There are charts available that gives ηfin for various fin shapes as a function of 

2 hL 
k t

where t is the thickness of the fin at the base.

The total heat transfer from a finned surface is:

. . .

fin fin b total fin b

 =  + 

         =  A  h θ  + (A  - A ) h θ

total fin unfinnedQ Q Q



As a practical guide, the ratio (p k / A h) should be much larger than unity to justify

the use of fins. Although the surface area of heat transfer is increased, the thermal

resistance over the portion of the surface where the fins are attached is also

increased.
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Example 17

Compare ηfin of a plate fin of length L = 1.5 cm,

thickness t = 0.2 cm, for the following cases:

a) Fin material is Al (k = 207.64 W/m.K) and h =

283.9 W/m2.K

b) Fin material is steel (k = 41.5 W/m.K) and h =

510.9 W/m2.K

Assume negligible heat loss from the tip.

 tanh m L
 = 

m L
fin

c

p h 2 h
m =   

A  k k t


2 h
m L  L 

k t

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 

(2) (283.9)
tanh (0.015) 

(207.64) (0.002)tanh m L
 =  =  = 0.91

m L (2) (283.9)
(0.015) 

(207.64) (0.002)

fin

 
 
 

c

p 2 w + 2 t 2 t 2 t
 =  =  1 +         if  w >> t      0  besides 1 

A w t t w t w

 
  

 

(a)

 

(2) (510.9)
tanh (0.015) 

(41.5) (0.002)tanh m L
 =  =  = 0.56

m L (2) (510.9)
(0.015) 

(41.5) (0.002)

fin

 
 
 (b)

Solve the same problem using the fin-efficiency Figure.
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Example 18

Longitudinal thin fins are attached

on the outer surface of a tube of

inside radius ra, outside radius rb,

and legth L. The hot and cold fluids

flowing inside and outside the tube

have mean temperatures Ti and To,

and heat transfer coefficients hi and

ho, respectively.

The total heat transfer area on the outer surface of the tube, including the surface

areas of the fins and the unfinned portion of the tube, is Atot m2 and the ratio of the fin

surface area Afin to the total heat transfer are Atot is β. The fin efficiency ηfin and the

thermal conductivity k of the tube material are given.
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a) Derive an expression for the heat transfer rate Qfin through the finned tube.

b) Compare Qfin with the heat transfer rate Qb for the case with no fins on the tube.

The thermal resistance

concept can be used as

shown in the Figure.

Rof is the thermal resitance

of the outside flow including

the effects of the longitudinal

fins.
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Total heat transfer rate from the finned surface:

fin fin fin o o tot fin o oQ  =  A  h  θ  + (A  - A ) h  θ  

fin
fin fin tot o o

tot

A
Q  =   + (1 - ) A  h  θ     if   = 

A
   

Define area-weighted fin efficicency:
'

fin =   + (1 - )fin   

' b o
fin tot o b o

of

T  - T
Q  =  A  h  (T  - T ) = 

R
fin

Therefore:
of '

tot o

1
R  =  

 A  hfin
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Using the known temperatutes, Ti and To, the total heat transfer rate from the finned

surface becomes:

i o
fin

i t of

T  - T
Q  = 

R  + R  + R

b
i t

a i a

r1 1
R  =    and   R  =  ln

2  r  L h 2  L k r 

 
 
 

(b) If there are no fins:
i o

b o

i t o b o

T  - T 1
Q  =     where   R  = 

R  + R  + R 2  r  L h

The ratio is: i t ofin

i t ofb

R  + R  + RQ
 = 

R  + R  + RQ
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3.11  Fin Effectiveness

The performance of the fins is judged on the

basis of the enhancement in heat transfer relative

to the no-fin case.

The performance of fins is expressed in terms of 

the fin effectiveness  εfin defined as

. .

.

 

 =  = 
h A  (T  - T )

fin fin
fin

b b
no fin

Q Q

Q



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Remarks Regarding Fin Effectiveness

 The thermal conductivity k of the fin material should be as high as possible. It is

no coincidence that fins are made from metals.

 The ratio of the perimeter to the cross-sectional area of the fin p / Ac should be

as high as possible.

 The use of fins is most effective in applications involving a low convection heat

transfer coefficient.

 Hence, the use of fins is more easily justified when the medium is a gas instead

of a liquid, and the heat transfer is by natural convection instead of by forced

convection.
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Overall Effectiveness

An overall effectiveness for a finned surface 

is defined as the ratio of the total heat transfer 

from the finned surface to the heat transfer 

from the same surface if there were no fins.

 
.

, .
 

 

h A  +  A
 =  = 

h A

unfin fin finfin
fin overall

no fin
no fin

Q

Q



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Proper Length of a Fin

An important step in the design of a fin 

is the determination of the appropriate 

length of the fin once the fin material 

and the fin cross section are specified.

The temperature drops along the fin 

exponentially and asymptotically 

approaches the ambient temperature 

at some length.
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Fin Arrays
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Total surface area:

A  = N A  + A
t f b

A  = N A  + At f b

Number of fins Area of exposed base (prime surface)

Total heat flow rate:
.

0

,0

θ
Q  = N  h A  θ  + h A  θ  =  h A  θ  = 

R

b
t f f b b b t b

t

 

Overall finned-surface efficiency:
0

N A
 = 1 -  (1 - ) 

A
f

f

t

 

Overall surface resistance: ,0

0

θ 1
R  =  =  

Q  h A
b

t

t t

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Equivalent thermal circuit
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Example 19

For the turbine blade and operating conditions shown in the figure,

a) Determine whether blade temperatures are less than the maximum allowable 

value (1050 °C) for the prescribed operating conditions;

b) Find the heat loss from the blade.

Assume adiabatic tip.
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Assumptions:

(1) One-dimensional, steady-state conduction in the blade, (2) Constant k, 

(3) Adiabatic blade tip, (4) Negligible radiation.

Analysis:  Conditions in the blade are determined by Case B of Table 3.4.

(a)

With the maximum temperature existing at  x  = L, Eq. 3.75 yields

1m L = 47.87 m  x 0.05 m = 2.59

T(L) - T 1
 =  

T  - T cosh( )b mL




1

4

h p (250) (0.11)
m =  =   = 47.87 m

k A (20) (6 10 )c




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subject to the assumption of an adiabatic tip, the operating conditions are 

acceptable.

b fQ  Q 508 W  

4M = h p k A  θ  = (250) (0.11) (20) (6 10 ) (- 900) = - 517 Wc b


(b)

cosh(m L) = 5.51

300 - 1200
T(L) = 1200 +  = 1037 C

5.51

Q  = M tanh(m L) = (- 517) (0.983) = - 508 Wf



ME – 212   THERMO-FLUIDS ENGINEERING II

Prof. Dr. Faruk Arınç Spring 2013

Comments:

Radiation losses from the blade surface contribute to reducing the blade

temperatures, but what is the effect of assuming an adiabatic tip condition?

Calculate the tip temperature allowing for convection from the gas.
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Example 20

Determine the maximum allowable power for a 20 mm x 20 mm electronic chip

whose temperature is not to exceed 85 °C when the chip is attached to an air-

cooled heat sink with N = 11 fins of prescribed dimensions.

T   = 20 C o
ooAir

k = 180 W/m-K

T  = 85 Cc
o

t,cR”  = 2x10  m -K/W-6 2

h = 100 W/m -K 2

L = 15 mm f 

L = 3 mm  b

W = 20 mm 

S  = 1.8 mm

t T  c

q  c
R  t,c

R  t,b

R  t,o

T   oo



ME – 212   THERMO-FLUIDS ENGINEERING II

Prof. Dr. Faruk Arınç Spring 2013

3.12  Critical Radius of Insulation

Consider the insulated cyclinder

shown in the Figure. T1 is kept

constant.

Heat flow rate: 1

ins conv

T  - T
Q = 

R  + R



2
ins

1

r1
R  =  ln

2  L k r

 
 
 

conv

2 o

1
R  = 

2  r  L h

If r2 increases, Rins increases, but Rconv decreases. What happens to Q?
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Q reaches a maximum value at a

certain radius r2, and this is called

the critical radius of insulation, r2

= rcr.

Set the first derivative of Q with

respect to r2 equal to zero. The

maximum occurs at rcr.

cr

o

k
r  = 

h
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Physical significance: Heat loss from a pipe increases with addition of insulation if

pipe radius r1 is less than rcr until rcr is reached. Then, it starts to decrease.

If the effect of heat loss by radiation is included, the critical radius is somewhat

lowered.

 1

cr2 2
2 2 o0 2

2

1 0 2

2  k L T  - TdQ 1 k k
 = -   -  = 0    =>    r  = 

dr r hh  rr k
ln  + 

r h  r

 
 
  

    
  

  
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