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HEAT TRANSFER
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Heat transfer and temperature are closely related, but they are of different nature.

Temperature is a scalar quantity with only a magnitude.

Whereas heat transfer is a vector quantity with direction as well as a magnitude.
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Symbols and Units

T. Temperature, in °C or K

t. Time, s

A: Area, m?

K, or A: Thermal conductivity, W/m.°C or W/m.K
Q : Heat flow rate: J/s or W

g, q9°= Q/A: Heat flux, W/m?2

€4en' Jgen 92 Thermal energy generation rate, W/m?
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2.1. Heat Flux Components

In general, temperature varies in all

T T$T2 T directions, hence there is heat flow in
H ) )
—_— H=L | those directions.
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Fourier’s Law of heat conduction

QCOI‘]d,X — qcond,x - _ k aT(t,X;y;Z)
A, OX
Qcondy — q - k 8T(t,X,y,Z) — qcond = qx T+ qy ]+ qz IZ
cond
A, 4 oy
Qcond,z — qcond,z —_dl k 5T(t,X,y,Z)
A 0z B

Note that the thermal conductivity, k, at any given location does not vary at uniform
temperature with the direction at that point for an isotropic medium, i.e., K is not a

function of space variables. Exceptions: laminated sheets, crystals, wood (material

with grains), etc.
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The thermal conductivity, k or A, may also vary with temperature.
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2.2. Differential Equation of Heat Conduction

The above equations imply that if the temperature distribution is known, then the rate

of heat flow in all directions can be found.

The temperature distribution in a medium is determined from the solution of the
differential equation of heat conduction subject to a set of appropriate boundary

conditions.

Consider the following infinitesimaly small volume element (Ax Ay Az) and write the

energy balance:

Prof. Dr. Faruk Aring Spring 2013



Bilkent University ME - 212 THERMO-FLUIDS ENGINEERING Il

_ —
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= 7 internal energy
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T

Rate of heat  Rate of heat Rate of heat  Rate of change

conduction = conduction + generation — of the energy
atx, y,and z at x+Ax, y+Ay, inside the content of the
l and "+A=' element element

AN

(Q + Q + Q \ éﬁm y+,ﬁy z+,ﬁ_ gen element — Z’e;zenf

0 oT 0 oT 0 oT . oT
K + K + K +e,.,,=pC, —
OX OX oy oy 0z 0z ot
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2.3. Heat Conduction Equation in Other Coordinate System:
Cartesian Coordinate System:

0 (L T\, 0 ( 0T\ o( o\, ., _ of
ax\"“ox) Tay\“ay) Taz\"az) "1 TPy

Heat Heat
generated  stored

Heat conducted

Cylindrical and Spherical Coordinate Systems:

10 (, 0T\ 19 ( 9T\ o( or\ . _ o
ror\ T or) Trza0\"90) T9z\"“9z) "1 TP

Prof. Dr. Faruk Aring

10, 0T\, 1 9 . er\ 1 af . . 0T\ . o
2 or\®" 5 ) Y r2sin2(0) 39\ ¥ 3¢ ) T 2Zsin (@) 90 | K SO) 5 ) T4 =P 6 5

Spring 2013



(@ Bilkent University ME - 212 THERMO-FLUIDS ENGINEERING Il

At
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Cylindrical Coordinate Spherical Coordinate

Systems: (r, 8, 2) Systems: (p, 6, ¢)
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General Methodology of Solution

- Solve the three-dimensional partial differential equation of heat conduction

0 (LT, 9 ( 0T\ o( o\ ., _ of
ax\ " ox) Tay\"“ay) Taz\"az) "1 TPS G

and find the temperature profile, T(x,y,z,t), in the solid.

- Use the initial condition (on time) and the given boundary conditions (two

for each coordinates (X, y, and z for Cartezian system).

- Note that the thermal conductivity, k, may not be constant and can be a

fuction of the space parameters (X, y, and z in Cartesiam system)
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General Methodology of Solution

- Use Fourier’s law of heat condiction to find the heat flow rate in each

direction (Q,, Q,, and Q, for Cartezian system).

oT
Q, =-k, A, =
- Note that even A, the heat transfer area, can ve a function of the space

coordinate, x

- Find Q=Q,+Q, +Q,
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2.4. Boundary Conditions:

- Specified temperature boundary condition
- Specified heat flux boundary condition

- Convection boundary condition

- Radiation boundary condition

- Interface boundary condition

- Generallized boundary conditions
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Specified temperature boundary condition

o Imitially
h Lty
Ol

For one-dimensional heat transfer through a plane
wall of thickness L, for example, the specified
temperature boundary condition can be expressed

as

T0,t) =T,

T(Lt) =T,

The specified temperatures can be constant, which is the case for steady

conduction, or may vary with time.
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Specified heat flux boundary condition

Heat
flux | Conduction

dT(0, 1)
dx

Gy = -k

dl(L. 1)
ox

—k

Oe

Heat

Conduction| flux

=

-

L

I

The heat flux in the positive x-direction
anywhere in the medium, including the
boundaries, can be expressed by

Fourier’s law of heat conduction as

" dT
dx

This is the heat flux in the positive x-direction

The sign of the specified heat flux is determined by inspection: positive if the heat

flux is in the positive direction of the coordinate axis, and negative if it is in the

opposite direction.
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Two special cases — Insulated boundary

Insulated boundary

Insulation T(x. 1) 60°C
| ¢ <
0 7 £
r_)_T [ 0. 1) —0
dx

T(L 1) =6"C

aT(0,t aT(0,t

dx dx
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Convection boundary condition

Heat conduction at the Heat convection at the

surface in a selected direction surface in the same direction

Convection | Conduction ;
1
- aT(0,t)
Teer —k ———==h,[T., — T(0,t)]
: - 1 ool )
h [T, - TO, PSR ox
ox
j Conduction | Convection
4y oT (L, t)
7 — —k — == b, [T(L, D) — T,
OT(L. 1) 0x
—k = I[TL.n-T,]
ox 2 2
(e *L v\
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Radiation boundary condition

Heat conduction at the Radiation exchange at the

surface in a selected direction surface in the same direction

Radiation | Conduction

) ) oT(0,6)

— 4 . 4
€0 [Tim. (o 710, f)4] ==k ()TE)(:. ) k dx €10 [T surr 1 T(O; t) ]
AN .
l"l t'z
T.\ul'l. | Tsu”, 2 aT(L, t)
Conduction | Radiation —k Tax  _ &2° [T(L, t)* —T*,,,., ]
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Interface boundary conditions

Interface At the interface, the requirements are:

: e , - The same temperature at the area of
Material Material
A B contact,
T (% 1) = Tg(x,, 1) - The heat flux on the two sides of an
! RS interface must be the same.
’IAu, 1) l”(.x, 7
Ty(xq, t) = Tg(x,, t)
Conduction | Conduction

aTA(xO,t): . T z(x, t)

dx B dx

- E)’l;,g.to, __; Enhgo, ) —k,
4 x 2
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Generalized boundary conditions

In general, a surface may involve convection, radiation, and specified heat flux,
simultaneously. The boundary condition in such cases is again obtained from a

surface energy balance, expressed as

Heat transfer to the Heat transfer from the

surface in all modes surface in all modes
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Simplified cases 1/ o
2 2 2
e C
Constant thermal conductivity aall + o1 + ol g Joen P or
ox* oy® oz° k k ot

Constant thermal conductivity O°T N o°T  o°T N égen N

2 2 + 2 =0
and steady state OX oy 0z K
Poisson equation
Constant thermal conductivity, o°T N o°T N o°T _ 0
2 2 2
steady state, and no heat generation X oy 0z

Laplace equation
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Heat generation in solids

E

2
gen, elecric __ I Re

Vol TréL

Resistance heating in wires €4, =

Exothermic chemical reactions in a solid

Nuclear reactions in fuel rods
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2.5. Non-dimensional heat conduction parameters

The number of variables in a heat conduction problem can be reduced by
Introducing non-dimensional parameters. Non-dimensional scaling provides a
method for developing dimensionless groups that can provide physical insight into

the importance of various terms in the system of governing equations.

Consider the following problem:

A slab in the region 0 < x < L with constant

thermal properties

k = |C:att=0, T=TO0 (uniform)
/_, Egen h
= BC’s::at x =0 Insulated surface
Insulated _
at x =L Convection

= There is heat generation o
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T(X,) €gen c, oT
Differential equation: 0T Cgen _ LG O

oX° k k ot

Initial condition: T(x,0)=T, att=0 , OsxsL
k I
/’ € gen h Boundary Conditions:
Insulated 1) 8T(O,t) =0 atx=0 , t>0
04 - > OX
2)k5gLD:h(T¢@-1) atx=L , t>0
X

The differential equation can be non-dimensionalized by defining the following non-

dimensional variables:

X=2 and ©-= -1
L T, - T,
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. . . 0% €, L 00 .
Differential equation: > = . In 0<X<1 fort>0
oX* (Ty-T,) k  d(at/L?)

Initial condition: 6=1 in 0<X<1 fort=0

Boundary Conditions: 1) @ =0 atX=0 fort>0
oX
2) . = ht 0 atX=1 for t>0
oX K

Define three non-dimensional parameters

Biot Number Bi = hTL Fourier Number Fo = OI‘__zt
L2
Non-dimensional heat generation: G = gen
K (To B Too)
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Bi and Fo are two important non-dimensional parameters frequently used in heat

conduction problems

The Biot number, Bi, is the ratio of the thermal resistance for conduction inside a

body to the resistance for convection at the surface of the body

Fourier Number, Fo, is a measure of the rate of heat conduction in comparison
with the rate of heat storage in a given volume element.
at _k(1/L) * _ Rate of heat conduction across L in volume L®

Fo = 2 T 3 - : 3
L pc, L/t Rate of heat storage in volume L
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