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HEAT TRANSFER
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2.  CONDUCTION – Basic Equations

Heat transfer and temperature are closely related, but they are of different nature.

Temperature is a scalar quantity with only a magnitude.

Whereas heat transfer is a vector quantity with direction as well as a magnitude. 
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Symbols and Units

T: Temperature, in ⁰C or K

t. Time, s

A: Area, m2

k, or λ: Thermal conductivity, W/m.⁰C or W/m.K

: Heat flow rate: J/s or W

, q’’= Q/A: Heat flux, W/m2

, , q’’’: Thermal energy generation rate, W/m3

Q

q

gene geng
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2.1.  Heat Flux Components

In general, temperature varies in all

directions, hence there is heat flow in

those directions.
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cond,x

cond,x

x

Q T(t,x,y,z)
 = q  = - k 

A x





cond,y

cond,y

y

Q T(t,x,y,z)
 = q  = - k 

A y





cond,z

cond,z

z

Q T(t,x,y,z)
 = q  = - k 

A z





cond x y zq  = q  i + q  j + q  k

Note that the thermal conductivity, k, at any given location does not vary at uniform

temperature with the direction at that point for an isotropic medium, i.e., k is not a

function of space variables. Exceptions: laminated sheets, crystals, wood (material

with grains), etc.

Fourier’s Law of heat conduction
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The thermal conductivity, k or λ, may also vary with temperature.
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2.2. Differential Equation of Heat Conduction

The above equations imply that if the temperature distribution is known, then the rate

of heat flow in all directions can be found.

The temperature distribution in a medium is determined from the solution of the

differential equation of heat conduction subject to a set of appropriate boundary

conditions.

Consider the following infinitesimaly small volume element (Δx Δy Δz) and write the

energy balance:
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gen p

T T T T
k  + k  + k  + e  =  c  

x x y y z z t


          
    

          

q’’’
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Cartesian Coordinate System:
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+
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𝜕
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Cylindrical and Spherical Coordinate Systems:

2.3.  Heat Conduction Equation in Other Coordinate System:
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Cylindrical Coordinate 

Systems: (r, θ, z)

Spherical Coordinate 

Systems: (ρ, θ, ϕ)
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General Methodology of Solution

- Solve the three-dimensional partial differential equation of heat conduction 

and find the temperature profile, T(x,y,z,t), in the solid.

𝜕

𝜕𝒙
𝒌
𝜕𝑻

𝜕𝒙
+

𝜕

𝜕𝒚
𝒌
𝜕𝑻

𝜕𝒚
+

𝜕

𝜕𝒛
𝒌
𝜕𝑻

𝜕𝒛
+ 𝒒′′′ = ρ 𝒄𝐩

𝜕𝑻

𝜕𝒕

- Use the initial condition (on time) and the given boundary conditions (two

for each coordinates (x, y, and z for Cartezian system).

- Note that the thermal conductivity, k, may not be constant and can be a 

fuction of the space parameters (x, y, and z in Cartesiam system)
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General Methodology of Solution

- Use Fourier’s law of heat condiction to find the heat flow rate in each 

direction (Qx, Qy, and Qz for Cartezian system).

- Note that even A, the heat transfer area, can ve a function of the space 

coordinate, x

- Find  Q = Qx + Qy + Qz

x x

T
Q  = - k  A  

x
x




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2.4.  Boundary Conditions:

- Specified temperature boundary condition

- Specified heat flux boundary condition

- Convection boundary condition

- Radiation boundary condition

- Interface boundary condition

- Generallized boundary conditions



ME – 212   THERMO-FLUIDS ENGINEERING II

Prof. Dr. Faruk Arınç Spring 2013

Specified temperature boundary condition

For one-dimensional heat transfer through a plane

wall of thickness L, for example, the specified

temperature boundary condition can be expressed

as

𝑻 𝟎, 𝒕 = 𝑻𝟏

𝑻 𝑳, 𝒕 = 𝑻𝟐

The specified temperatures can be constant, which is the case for steady

conduction, or may vary with time.
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Specified heat flux boundary condition

The heat flux in the positive x-direction

anywhere in the medium, including the

boundaries, can be expressed by

Fourier’s law of heat conduction as

𝒒′′ = −𝒌
𝒅𝑻

𝒅𝒙

The sign of the specified heat flux is determined by inspection: positive if the heat

flux is in the positive direction of the coordinate axis, and negative if it is in the

opposite direction.

This is the heat flux in the positive x-direction
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Two special cases – Insulated boundary

𝒌
𝝏𝑻(𝟎, 𝒕)

𝝏𝒙
= 𝟎 𝒐𝒓

𝝏𝑻(𝟎, 𝒕)

𝝏𝒙
= 𝟎

Insulated boundary
Thermal symmetry

𝝏𝑻(𝑳/𝟐, 𝒕)

𝝏𝒙
= 𝟎
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Convection boundary condition

Heat conduction at the 

surface in a selected direction

Heat convection at the 

surface in the same direction
=

−𝒌
𝝏𝑻(𝟎, 𝒕)

𝝏𝒙
= 𝒉𝟏 𝑻∞𝟏− 𝑻(𝟎, 𝒕)

−𝒌
𝝏𝑻(𝑳, 𝒕)

𝝏𝒙
= 𝒉𝟐 𝑻 𝑳, 𝒕 − 𝑻∞𝟐
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Radiation boundary condition

Heat conduction at the 

surface in a selected direction

Radiation exchange at the 

surface in the same direction
=

−𝒌
𝝏𝑻 𝟎, 𝒕

𝝏𝒙
= ε𝟏σ 𝑻𝟒

𝐬𝐮𝐫𝐫, 𝟏
− 𝑻 𝟎, 𝒕 𝟒

−𝒌
𝝏𝑻 𝑳, 𝒕

𝝏𝒙
= ε𝟐σ 𝑻 𝑳, 𝒕 𝟒− 𝑻𝟒

𝐬𝐮𝐫𝐫, 𝟐
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Interface boundary conditions

𝑻𝐀(𝒙𝟎, 𝒕) = 𝑻𝐁(𝒙𝟎, 𝒕)

−𝒌𝐀

𝝏𝑻𝐀 𝒙𝟎, 𝒕

𝝏𝒙
= −𝒌𝐁

𝝏𝑻𝐁 𝒙𝟎, 𝒕

𝝏𝒙

At the interface, the requirements are:

- The same temperature at the area of

contact,

- The heat flux on the two sides of an

interface must be the same.
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Generalized boundary conditions

In general, a surface may involve convection, radiation, and specified heat flux,

simultaneously. The boundary condition in such cases is again obtained from a

surface energy balance, expressed as

Heat transfer to the

surface in all modes
=

Heat transfer from the

surface in all modes
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Simplified cases

Constant thermal conductivity
2 2 2

gen p

2 2 2

e  cT T T T
 +  +  +  =  

k k tx y z

   

  

Constant thermal conductivity

and steady state

2 2 2
gen

2 2 2

eT T T
 +  +  +  = 0

kx y z

  

  

Constant thermal conductivity,

steady state, and no heat generation

2 2 2

2 2 2

T T T
 +  +  = 0

x y z

  

  

Laplace equation

1/

Poisson equation
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Variable thermal conductivity, k

The thermal conductivity of a material, in 

general, varies with temperature.

An average value for the thermal 

conductivity is commonly used when the 

variation is mild.

This is also common practice for other 

temperature-dependent properties such 

as the density and specific heat.
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Heat generation in solids

Resistance heating in wires

2
gen, elecric e

gen 2

E I  R
e  =  = 

Vol  r  L

Exothermic chemical reactions in a solid

Nuclear reactions in fuel rods
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2.5.  Non-dimensional heat conduction parameters

The number of variables in a heat conduction problem can be reduced by

introducing non-dimensional parameters. Non-dimensional scaling provides a

method for developing dimensionless groups that can provide physical insight into

the importance of various terms in the system of governing equations.

Consider the following problem:

 A slab in the region 0 ≤ x ≤ L with constant

thermal properties

 IC: at t = 0, T = T0 (uniform)

 BC’s:: at x = 0 Insulated surface

at x = L Convection

 There is heat generation egen



ME – 212   THERMO-FLUIDS ENGINEERING II

Prof. Dr. Faruk Arınç Spring 2013

Differential equation:
2

gen p

2

e  cT(x,t) T
  =  

k k tx

 



Initial condition: T(x,0) = T0 at t = 0 , 0 ≤ x ≤ L

Boundary Conditions:

T(0,t)
1)   = 0    at x = 0   ,   t > 0

x





 
T(L,t)

2)  k  = h T(L,t) - T    at x = L   ,   t > 0
x







The differential equation can be non-dimensionalized by defining the following non-

dimensional variables:

0

T - Tx
X =      and     θ = 

L T  - T







ME – 212   THERMO-FLUIDS ENGINEERING II

Prof. Dr. Faruk Arınç Spring 2013

Differential equation:
   

22
gen

2 2
0

e  Lθ θ
  =     in    0 X 1    for  t > 0

T  - T  kX  t / L

 
 

 

Initial condition: θ = 1 in 0 ≤ X ≤ 1 for t = 0

Boundary Conditions:
θ

1)   = 0    at X = 0   for  t > 0
X





θ h L
2)   =  θ   at X = 1   for   t > 0

X k





Define three non-dimensional parameters

Biot Number
h L

 Bi = 
k

Fourier Number
2

 t
 Fo = 

L



Non-dimensional heat generation:
 

2

gen

0

e  L
 G = 

k T  - T

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Bi and Fo are two important non-dimensional parameters frequently used in heat

conduction problems

Fourier Number, Fo, is a measure of the rate of heat conduction in comparison

with the rate of heat storage in a given volume element.

The Biot number, Bi, is the ratio of the thermal resistance for conduction inside a

body to the resistance for convection at the surface of the body

  2 3

2 3 3

p

k 1/  L t Rate of heat conduction across L in volume L
 Fo =  =  = 

L  c  L  / t Rate of heat storage in volume L

L


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