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Abstract 

This paper demonstrates how to implement various Kalman filter architectures, namely a tightly-coupled 

extended Kalman filter, a loosely-coupled linear Kalman filter, and a tightly-coupled unscented Kalman 

filter, for estimating the position, velocity, and attitude of an autonomous racing drone. Inertial 

measurement unit measurements for specific force were used in conjunction with ultra-wide band 

pseudo-range and pseudo-range rates to predict and update the filters, respectively, for position and 

velocity estimation. Hence, this is an integrated navigation problem that uses inertial navigation system 

and aiding sensor measurements for drone navigation purposes. The UWB measurements were simulated 

using the ground truth translational position. Body angular rates from the IMU and quaternion 

measurements from a visible-light camera, equipped with a high-fidelity video processing system, were 

used to predict and update the filters, respectively, for attitude estimation. The high-fidelity video 

processing system provided the ground truth quaternion vector as well. The dataset pertains to the UZH-

FPV’s drone racing, visual-inertial odometry database. 

Keywords: Tightly-Coupled, Extended Kalman Filter (EKF), Loosely-Coupled, Linear Kalman Filter, 

Unscented Kalman Filter (UKF), Inertial Measurement Unit (IMU), Ultra-Wideband (UWB), 

Integrated Navigation, Inertial Navigation System (INS), Drone Navigation, UZH-FPV 
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I. Abbreviations 

AHRS  Attitude Heading and Reference System 

CL:   Closed-Loop 

DCM:  Direction Cosine Matrix 

EKF:   Extended Kalman Filter 

GDOP:  Geometric Dilution of Precision 

GT:   Ground Truth 

HFVPS:  High-Fidelity Video Processing System 

IMU:   Inertial Measurement Unit 

INS:   Inertial Navigation System 

KF:   Kalman Filter 

LC:   Loosely-Coupled 

LKF:  Linear Kalman Filter 

LLNF:   Local-Level Navigation Frame 

NED:  North, East, Down 

NLS:  Nonlinear Least Square 

OL:   Open-Loop 

TC:   Tightly-Coupled 

TSE:  Taylor Series Expansion 

UKF:  Unscented Kalman Filter 

UWB:   Ultra-Wideband 

UZH-FPV: University of Zurich-Flight Performance Visualizer 
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II. Notations 

• Scalar Variables: Lower- or upper-case letter or symbol (e.g., 𝜅). 

 

• Vectorial Variables: Lower- or upper-case letter with arrow accent: 

o Position Vectors: Lower-case ‘r’ (i.e., 𝑟). 

o Velocity Vectors: Upper-case ‘v’ (i.e., 𝑉⃗⃗). 

o Quaternion Vectors: Lower-case ‘q’ (i.e., 𝑞⃗), 

▪ Scalar followed by vectorial quaternions (i.e., [𝑞𝑤 𝑄⃗⃗𝑥𝑦𝑧

𝑇
]
𝑇

). 

o State Vectors: Lower-Case ‘x’ (i.e., 𝑥⃗). 

o Input Vectors: Lower-Case ‘u’ (i.e., 𝑢⃗⃗). 

o Measurement Vectors: Lower-case ‘y’ (i.e., 𝑦⃗). 

 

• Measured Variables: Variables with Tilda accent (e.g., 𝜔̃⃗⃗⃗). 

 

• Matrices: Upper-Case letter in bold with square brackets: 

o Identity Matrix: Upper-Case ‘i’ with right subscript number (e.g., [𝑰𝟑] is a 3x3 identity). 

o Attitude Matrix: Upper-Case ‘c’ with right subscript letters (e.g., [𝑪𝒏𝒃] is body to LLNF). 

o State Propagation Matrix: Upper-Case ‘a’ (i.e., [𝑨]). 

o State Propagation Matrix: Upper-Case ‘b’ (i.e., [𝑩]). 

o State Covariance Matrix: Upper-Case ‘p’ (i.e., [𝑷]). 

o Process Noise Covariance Matrix: Upper-Case ‘q’ (i.e., [𝑸]). 

o Measurement Noise Covariance Matrix: Upper-Case ‘r’ (i.e., [𝑹]). 

o Measurement Weight Matrix: Upper-Case ‘w’ (i.e., [𝑾]). 

o Kalman Gain Matrix: Upper-Case ‘k’ (i.e., [𝑲]). 

o (Jacobian of) State-to-Measurement Matrix: Upper case ‘h’ in bold (i.e., [𝑯]), 

▪ Jacobian numerically determined at a state (e.g., [𝑯|𝑥⃗𝑘
−]). 

o Jacobian Nonlinear Least Square Matrix: Upper case ‘g’ in bold (i.e., [𝑮]). 

 

• Reference Frames: Right subscript or superscript letter(s): 

o Inertial Frame: Lower-Case ‘i'. 

o Body Frame: Lower-Case ‘b’. 

o LLNF: Lower-Case ‘n’. 

o Inertial LLNF: Upper-Case ‘n’ (i.e., N). 

o Relative to/W.R.T.: Lower-Case right subscript letters (e.g., 𝜔⃗⃗ 𝑖𝑏 is in body w.r.t. inertial). 

o Resolved in: Lower-case right superscript letter (e.g., 𝜔⃗⃗ 𝑏 is resolved in body). 

 

• Predicted Vector/Matrix: right ‘-’ superscript (e.g., 𝑥⃗𝑘
−). 

 

• Updated Vector/Matrix: right ‘+’ superscript (e.g., 𝑥⃗𝑘
+). 
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III. Introduction 

This paper provides a comprehensive comparison of three different OL KFs for estimating the navigational 

solution (i.e., position, velocity, and attitude) of autonomous drones. The objective of this comparison is 

to determine the optimal sensor fusion architecture for low-grade IMUs that provides an appropriate 

tradeoff between computational load and complexity and solution accuracy and reliability. Such a 

determination would benefit the field of autonomous racing drones by allowing platforms to effectively 

navigate around racing courses in the required manner with minimal intervention. Accordingly, we 

conduct a literature survey to establish some expectations for our results and formulate a methodology. 

III.I. Literature Survey 

A recent thesis[1] dealt with implementing an LKF and an EKF to estimate the full state (i.e., triaxial 

position, velocity, and attitude) of an UAV. The thesis discussed that while the LKF is an optimal 

estimator with virtually no drawbacks to its application, it cannot process a nonlinear 

mathematical model for the prediction or a nonlinear measurement model for the update. 

Conversely, an EKF sacrifices the filter’s optimality to be able to process such nonlinear modelling 

scenarios. The EKF realizes this by using a 1st-order TSE linearization on the nonlinear models to 

reformulate the navigation problem into a linear, albeit low-order, approximate counterpart 

before proceeding to apply the LKF process. This results in the filter ignoring the errors due to the 

TSE approximations during both of its overarching steps, which introduces suboptimality. 

In fact, it was discussed in the same thesis[1] that a 1st-order TSE approximation is only accurate in 

the event that the higher-order terms are negligibly small in comparison. However, for a high-

speed, 6 degree of freedom UAV application, this is not the case, which introduces significant 

biases into the filter estimates.  

On the other hand, a different thesis[2] discussed that a UKF can bypass the introduction of 

approximation errors into the filter by approximating the Gaussian probability distribution of the 

states themselves without attempting to linearize them. This approximation enables the UKF to 

utilize the original, nonlinear models to propagate and update the state, resulting in typically 

much more accurate filter estimates compared to a conventional EKF since no explicit errors are 

introduced into the system without being accounted for by the covariance. 

The same thesis[2] outlined the process of computing so called “Sigma Points”, exclaiming that 

since the EKF processes the Gaussian distribution nonlinearly, it robs it of its inherent properties 

that constitute it into a Gaussian distribution. On the other hand, the computation of sigma points 

allows the distribution to retain its Gaussian nature to better capture the covariance of highly 

nonlinear motion profiles. This technique is known as the “Unscented Transformation”, and it 

computes points in the neighborhood of Gaussian distribution to facilitate an improvement in the 

filter estimation’s accuracy and robustness. 
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III.II. Methodology 

First, a dataset relevant to drone racing was procured from the UZH-FPV database for visual-

inertial odometry. The dataset included IMU and GT measurements. Next, aiding sensor data, 

namely UWB pseudo-range and pseudo-range rate measurements, were simulated using GT data 

and a local level navigational problem was formulated using appropriate assumptions. Then, in-

line with the literature survey, an OL TC EKF sensor fusion architecture was implemented to 

integrate the IMU and simulated aiding sensor measurement, which was the most widely used 

architecture for similar purposes. The EKF was tuned to ensure equivalent levels of covariance for 

both used measurements and an appropriate matching between the filter estimate and the 

ground truth measurements. Finally, two alternative OL sensor fusion architectures, namely a LC 

KF and a TC UKF, were tested against the dataset using the same covariance values.  

The two primary challenges faced throughout the implementation of the methodology pertained 

to the lengthy EKF tuning process and rectification of the GDOP impeding on the position 

estimates in the z-axes, particularly for the UKF. Regarding the former, the particularly low-grade 

IMU used by the platform made it so that the prediction step for all KFs resulted in highly 

inaccurate state prediction due to biases above all else, such that an extensive and rigorous tuning 

procedure was necessary to establish an appropriate balance between the process and 

measurement noise covariance matrices. Else, the EKF, and hence the two alternative filters, 

estimated the state vector with an extensive drift that would require a CL system to otherwise 

rectify and remedy. 

On the other hand, the effect of the GDOP phenomenon in an indoor environment meant that 

the placement of the UWB transmitters would have to take into account that excessive proximity 

between the transmitters with respect to current drone position could potentially result in the 

deletion of one, or more, pseudo UWB measurements. In fact, the effect of the GDOP on the UKF 

was so prominent that despite placing four different UWB transmitters as far apart as reasonably 

possible in a horizontal (xy) plane containing the origin, a fifth UWB transmitter with a different 

z-axis position had to be included to allow the UKF to even begin to capture the intricacies of the 

quick, highly nonlinear drone motion in that axis. 
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IV. Dataset 

The dataset used within the context of this paper belongs to the UZH-FPV’s indoor, forward-facing race 

track #10[4]. This was an indoor race track and the measurements were collected using the Snapdragon 

experimental setup, which enabled the collection of both IMU and GT measurements. 

The IMU data were composed of 38,137 measurements for two three-dimensional vectors, six quantities 

overall, sampled at 500 [Hz]. These vectors were the specific force in body frame ‘𝑓𝑏’ and the body angular 

rates with respect to inertial frame, resolved in body frame, ‘𝜔⃗⃗⃗𝑖𝑏
𝑏 ’. The IMU used was InvenSense’s MPU-

9250, which includes a magnetometer, making it an AHRS, though magnetometer measurements were 

not sampled. 

On the other hand, the GT data were composed of 14,950 measurements for two vectorial quantities, 

namely the translational position with respect to an LLNF ‘𝑟𝑛’ and the attitude’s quaternion with respect 

to the same LLNF ‘𝑞⃗𝑛’. Hence, overall, seven quantities were measured, again at a sampling frequency of 

500 [Hz]. 

Due to the matching of the sampling frequency between the IMU and GT measurements, they were time 

synchronized measurements, though the IMU began sampling measurements before, and continued 

sampling measurements after the GT sensors. Thus, only the portion of the IMU measurements with 

corresponding GT measurements were considered for our analyses. 

The GT measurements were used to simulate the UWB pseudo-range and pseudo-range rate 

measurements for the aiding sensor measurements necessary for a position and velocity state estimate. 

The UWB measurements were simulated using Eqns. 4.1 & 4.2 below, which require knowledge of the GT 

drone position and velocity and the kth UWB transmitters’ position and velocity. 

 

𝜌𝑘 = √(𝑥 − 𝑥𝑘)
2 + (𝑦 − 𝑦𝑘)

2 + (𝑧 − 𝑧𝑘)
2 

 

(4.1) 

𝜌̇𝑘 =
(𝑥 − 𝑥𝑘) ∗ (𝑉𝑥 − 𝑉𝑥,𝑘) + (𝑦 − 𝑦𝑘) ∗ (𝑉𝑦 − 𝑉𝑦,𝑘) + (𝑧 − 𝑧𝑘) ∗ (𝑉𝑧 − 𝑉𝑧,𝑘)

𝜌𝑘
 (4.2) 

 

Most UWB transmitters are fixed, such that 𝑉⃗⃗𝑘 = 0⃗⃗, which simplifies Eq. 4.2. Additionally, trilateration 

requires having at least three different pseudo-range measurements at any moment to obtain a position 

navigational solution. Thus, we instead use five transmitters, which allows the filters the chance to 

estimate, and hence eliminate, some of the measurement-associated errors. These UWB transmitters 

were placed as shown in Fig. 4.2, according to the perceived parameters of the closed environment based 

on the GT trajectory shown in Fig. 4.1 below. Moreover, UWB measurements will be sampled 100 times 

slower compared to GT and IMU data. 
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 Fig. 4.1: GT Drone Trajectory. 

From Fig. 4.1, we deduce from the inversion of the z-axis of the drone’s position trajectory that the LLNF 

used by GT measurements is a NED frame. 

 Fig. 4.2: UWB Transmitters’ Placement. 

In the NED frame whose origin is at the geometric center of the left wall of the testing environment, the 

UWB transmitters were placed along the walls, such that four were placed at the corners of a horizontal 

(xy) plane at zero elevation, while the last was placed dead-center along the ceiling. 
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Having found the correct definition of the LLNF which the GT measurements are given with respect to, we 

make use of that frame for the mechanization of the IMU measurements by assuming that this NED LLNF 

is inertial (i.e., star-fixed). Thus, we employ the mechanization equations in NED frame under the following 

assumptions, which yields the three mechanization equations Eqns. 4.3, 4.4, & 4.5: 

• GT data is in NED LLNF, so we assume that frame to be inertial (i.e., [𝑫]−1 = [𝑰𝟑] & 𝑖 = 𝑛 = 𝑁). 

• Total duration is under 30 [s], so Earth’s rotation is negligible (i.e., 𝜔⃗⃗⃗𝑖𝑒
𝑛 = 0⃗⃗). 

• Maximum displacement is under 30 [m], so Earth’s curvature is negligible (i.e., 𝜔⃗⃗⃗𝑒𝑛
𝑛 = 0⃗⃗). 

[𝑪𝑵𝒃]̇ = [𝜔⃗⃗⃗𝑁𝑏
𝑏 ×][𝑪𝑵𝒃] 

 
(4.3) 

𝑉̇⃗⃗𝑁 = [𝑪𝑵𝒃]𝑓𝑁 + 𝑔⃗𝑛 

 
(4.4) 

𝑟̇𝑁 = 𝑉𝑁 

 
(4.5) 

The data processing algorithm is outlined in Alg. 4.1 below. 

Alg. 4.1: Data Processing Algorithm. 

1. 𝐿𝑜𝑎𝑑 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 (𝐼𝑀𝑈 & 𝐺𝑇): 

a. 𝐿𝑜𝑎𝑑 𝐺𝑇 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒 𝑤. 𝑟. 𝑡. 𝐿𝐿𝑁𝐹. 

b. 𝐿𝑜𝑎𝑑 𝐼𝑀𝑈 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐹𝑜𝑟𝑐𝑒 𝑎𝑛𝑑 𝐵𝑜𝑑𝑦 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑅𝑎𝑡𝑒𝑠 𝑤. 𝑟. 𝑡. 𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝐹𝑟𝑎𝑚𝑒. 

2. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑈𝑊𝐵 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 (𝜌 & 𝜌̇): 

a. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝐺𝑇 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑏𝑦 𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝑇 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 

b. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑃𝑠𝑒𝑢𝑑𝑜 𝑅𝑎𝑛𝑔𝑒 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝜎𝜌 = 5/3 [𝑐𝑚] (Eq. 4.1). 

c. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑃𝑠𝑒𝑢𝑑𝑜 𝑅𝑎𝑛𝑔𝑒 𝑅𝑎𝑡𝑒 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝜎𝜌 = 5/3 [𝑐𝑚/𝑠] (Eq. 4.2). 

3. 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑧𝑒 𝐼𝑀𝑈 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑡𝑜 𝑂𝑏𝑡𝑎𝑖𝑛 𝐼𝑁𝑆 𝑆𝑡𝑎𝑡𝑒 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠: 

a. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑆𝑡𝑎𝑡𝑒 𝑅𝑎𝑡𝑒𝑠 𝑢𝑠𝑖𝑛𝑔 𝐺𝑇 𝑆𝑡𝑎𝑡𝑒𝑠. 

b. 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒 𝑏𝑦 𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝐿𝐿𝑁𝐹 𝐷𝐶𝑀 𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠 (Eq. 4.3). 

c. 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑏𝑦 𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝐿𝐿𝑁𝐹 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (Eq. 4.4). 

d. 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑦 𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝐿𝐿𝑁𝐹 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (Eq. 4.5) 

4. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝐼𝑁𝑆 𝑆𝑡𝑎𝑡𝑒 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑢𝑠𝑖𝑛𝑔 𝐺𝑇 𝐷𝑎𝑡𝑎 𝑎𝑛𝑑 𝐼𝑀𝑈 𝐸𝑟𝑟𝑜𝑟𝑠. 

a. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝐺𝑇 𝐸𝑢𝑙𝑒𝑟 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑅𝑎𝑡𝑒𝑠 𝑏𝑦 𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝑇 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒. 

b. 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝐺𝑇 𝐵𝑜𝑑𝑦 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑅𝑎𝑡𝑒𝑠 𝑏𝑦 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛. 

c. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝐺𝑇 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝑇 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦. 

d. 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝐺𝑇 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐹𝑜𝑟𝑐𝑒 𝑏𝑦 𝑆𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 

e. 𝑆𝑒𝑡 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 𝑎𝑛𝑑 𝐺𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒 𝐸𝑟𝑟𝑜𝑟𝑠[3]. 

f. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝐼𝑀𝑈 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠. 

g. 𝑅𝑒𝑝𝑒𝑎𝑡 4.1.4 𝑓𝑜𝑟 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐼𝑀𝑈 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠. 

In Alg. 4.1 above, 4.1.4 was a necessary step to judge whether the perceived drifts and errors in the 

mechanized INS states, with respect to the GT states, was within the expected boundaries imposed by the 

IMU sensor errors or not. The reason that necessitated this verification becomes apparent once Figs. 4.3, 

4.4, & 4.5 below are examined. 
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 Fig. 4.3: Drone Linear Position Time Variation. 

 

Fig. 4.4: Drone Linear Velocity Time Variation. 
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Fig. 4.5: Drone Attitude Quaternion Time Variation. 

Obviously, from Fig 4.3, the mechanized, actual IMU measurements exhibit a substantial drift from the GT 

position measurements, particularly in the z-axis where the drift is in the order of 10 [km]. This drift 

obviously results from Eq. 4.5 and Fig. 4.4, such that the drift in z-axis velocity is much more prominent 

compared to the miniscule errors exhibited in the x- and y-axis velocities. This behavior cast a doubt on 

the correctness of the IMU measurements, particularly the specific force in z-axis ‘𝑓𝑁,𝑧’. 

Additionally, examining Fig. 4.5 above, one can see that the quaternions derived from the actual IMU 

measurements are somehow, more-or-less, reflected images of the GT attitude about the zero-line, which 

further casts doubt regarding the body angular rates of the IMU measurements as a whole ‘𝜔̃⃗⃗⃗𝑁𝑏
𝑏 ’. 

Therefore, the most straightforward approach to confirm whether the doubtful IMU measurements are, 

in fact, correct interpretations of the GT measurements under the influence of sensor errors, we simulated 

the IMU measurements as in Alg. 4.1.4. 

As can be seen from Figs. 4.3, 4.4, & 4.5, the simulated and actual IMU measurements resulted in very 

similar INS state estimates, meaning that the sensor biases were indeed the source of the perceived drifts. 
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V. Filters 

Having properly formulated an indoor drone navigation problem, we may now move to designing the 

sensor fusion architecture that will combine INS state estimates, as a prediction for the KF state estimate, 

and aiding sensor measurements, as an update for the KF state estimate. 

Overall, a comparison between an OL TC EKF, an OL LC LKF, and an OL TC UKF is in order. Hence, the block 

diagram flowcharts for those sensor fusion architectures, the details of their filter governing equations, 

and overall sensor fusion algorithm for all three filter architectures will be examined in detail. However, 

to be able to compare the performance of all three filters with one another, it is necessary to ensure the 

equivalence of the propagation and covariance matrices employed by all three filters. Thus, since the EKF 

is the most widely used architecture, the covariance matrices will be tuned with respect to the EKF results 

until an appreciable degree of accuracy is reached. 

 Fig. 5.1: Drone Trajectory Estimate Comparison. 

Fig. 5.1 above serves as a preliminary comparison for the performance of all three filters with respect to 

the GT trajectory. It clearly showcases that the UKF was superior in terms of estimation accuracy to the 

EKF, which was in turn superior to the LKF. These results are definitely consistent with our expectations. 

The state vector to be estimated by all KFs is 𝑥⃗ = [𝑃⃗⃗ 𝑉⃗⃗ 𝑉⃗⃗]𝑇 for position, velocity, and attitude. Also, 

the input vector used by all KFs is 𝑢⃗⃗ = [𝑎̃⃗𝑁,𝑖𝑚𝑢 𝑞̃⃗𝑁,𝑖𝑚𝑢]
𝑇

, where 𝑎̃⃗𝑁,𝑖𝑚𝑢 = [𝑪𝑵𝒃]𝑓
̃
𝑏,𝑖𝑚𝑢 − 𝑔⃗𝑛. Hence, the 

state prediction employed in all KFs is 𝑥⃗𝑘
− = [𝑨]𝑥⃗𝑘−1

+ + [𝑩]𝑢⃗⃗𝑘−1, where: 

[𝑨] = [
[𝑰𝟑] [𝑰𝟑](𝑑𝑡)

0 [𝑰𝟕]
]
10×10

      [𝑩] = [
[𝑰𝟑](𝑑𝑡2/2) 0

0 [𝑰𝟕](𝑑𝑡)
]
10×7
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Finally, while all KFs work at a frequency of 500 [Hz], which is the IMU’s sampling frequency, attitude 

update is only available every 10 steps, while UWB update is only available every 100 steps, such that the 

necessary adjustments were made to proceed without an update when unavailable. 

V.I. OL TC EKF 

First, the open-loop, tightly-coupled extended Kalman filter architecture will be examined. This 

architecture uses a nonlinear, and hence suboptimal, KF to estimate the state using mechanized 

IMU, or INS, state to predict the state and then using raw UWB measurements and camera 

quaternion measurements to update the state.  

 Fig. 5.2: OL TC EKF Architecture. 

According to the above-shown sensor fusion architecture from Fig. 5.2, the governing equations 

for an OL TC EKF are Eqns. 5.1 & 5.2 below, where the measurement update is a 14x1 vector 

composed of five pseudo-range, five pseudo-range rate, and four quaternion measurements. 

Concurrently, by Eqns. 4.1 & 4.2, the relationship between the state vector ‘𝑥⃗’ and the 

measurement vector ‘𝑦⃗’ is nonlinear, spare for the attitude estimation part. Thus, it is necessary 

to use a nonlinear Kalman filter since the update block is nonlinear, as the calculation of the 

Kalman gain ‘[𝑲]’ and state covariance ‘[𝑷]’ matrices in that block require the Jacobian ‘[𝑯|𝑥𝑘
−]’. 

                           Prediction                𝑥⃗𝑘
− = [𝑨]𝑥⃗𝑘−1

+ + [𝑩]𝑢⃗⃗𝑘−1 

[𝑷𝒌
−] = [𝑨][𝑷𝒌−𝟏

+ ][𝑨]−𝟏 + [𝑸] 

(5.1) 

                           Update     [𝑲] = [𝑷𝒌
−][𝑯|𝑥⃗𝑘

−]
𝑻
[[𝑯|𝑥𝑘

−][𝑷𝒌
−][𝑯|𝑥⃗𝑘

−]
𝑻
+ [𝑹]]

−𝟏

 

𝑥⃗𝑘
+ = 𝑥⃗𝑘

− + [𝑲](𝑦⃗𝑘 − ℎ(𝑥⃗𝑘
−)) 

[𝑷𝒌
+] = [[𝑰𝟏𝟎] − [𝑲][𝑯|𝑥⃗𝑘

−]] [𝑷𝒌
−] 

(5.2) 
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For this particular EKF, the Jacobian is as follows, where we note that the 4x4 identity matrix is 

used to map a linear relationship between the attitude quaternion prediction and update: 

[𝑯] =

[
 
 
 
 
 
 
 
 
 
 
 
𝑥 − 𝑥1

𝜌1

𝑦 − 𝑦1

𝜌1

𝑧 − 𝑧1

𝜌1

⋮ ⋱ ⋮
𝑥 − 𝑥5

𝜌5

𝑦 − 𝑦5

𝜌5

𝑧 − 𝑧5

𝜌5

0 0

𝑉𝑥
𝜌1

    
𝑉𝑦

𝜌1
    

𝑉𝑧
𝜌1

⋮ ⋱ ⋮
𝑉𝑥
𝜌5

𝑉𝑦

𝜌5

𝑉𝑧
𝜌5

𝑥 − 𝑥1

𝜌1

𝑦 − 𝑦1

𝜌1

𝑧 − 𝑧1

𝜌1

⋮ ⋱ ⋮
𝑥 − 𝑥5

𝜌5

𝑦 − 𝑦5

𝜌5

𝑧 − 𝑧5

𝜌5

0

0 0 [𝑰𝟒]]
 
 
 
 
 
 
 
 
 
 
 

14×10

 

Application of this algorithm yields not only a state estimate and state covariance, but also an 

error with respect to the corresponding GT state. Hence, we compare the state estimate with the 

GT state and the error with the state covariance in Figs. 5.3, 5.4, & 5.5 below. 

 Fig. 5.3: OL TC EKF Position Estimate and Error. 

The subplots on the left of Fig. 5.3 indicate that the OL TC EKF position estimate adequately 

captures the overall trajectory, though with the noise-like deviation from the actual value; a 

trademark characteristic of any KF estimation. Moreover, the subplots on the right show that the 

error is well-bounded within the respective covariance elements. This indicates that the EKF used 

is neither too optimistic nor too pessimistic, a sign of an effective tuning process. However, in 

regions of highly-nonlinear behavior, the EKF estimate seems to exhibit notable deviation from 

the GT state due to the Jacobian being but a 1st-order TSE approximation, especially in the z-axis. 
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Another point to note is that the position covariance exhibits many discontinuities, a behavior 

associated with a KF operating at a higher frequency compared to the measurement update 

sampling frequency. Under such circumstances, the covariance would linearly increase while no 

update is available, then sharply plummet once one becomes available. Thus, we may conclude 

that our manner of implementing the no-update adjustments was successful. 

 Fig. 5.4: OL TC EKF Velocity Estimate and Error. 

Contrary to the position estimate, the velocity estimate appears to be rather too pessimistic as 

there exists an appreciably large margin between the error and the covariance, meaning that the 

filter is relying more on the update and less on the prediction (i.e., Kalman gain is high). However, 

the magnitude of the error itself is quite low, just as it was for the position estimates. This is better 

showcased by the subplots on the left of Fig. 5.4 compared to those on the right, as the error is 

clearly on the order of magnitude of about 1 [m/s], give-or-take.  

However, the true and estimated values for the velocity appear to be very distinct from one 

another, unlike the for position. Another point of contrast is that the high-frequency, high-

amplitude noise at regions of nonlinearity in the velocity estimate are almost completely absent, 

whereas they were observed at almost every peak and trough for the position profiles. This noise-

like deviation appears to have been traded-off with a bias-like offset at those same regions. 

Finally, we examine the attitude estimation in terms of the quaternions, where we note that the 

quaternion vector at each timestep could very easily be converted into the corresponding Euler 

angle representation of the attitude. However, since the DCM, quaternion, and Euler angle 

representations are all equivalent, we elected to work with the quaternion representation since 

the GT attitude information is provided in that domain. 
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 Fig. 5.5: OL TC EKF Attitude Estimate and Error. 

Seeing as how the subplots on the right of Fig. 5.5 showcase the same covariance drift when no 

measurement update is available, we first reexamine the error subplots of Fig. 5.4 to understand 

why such a behavior was not as apparent with the velocity estimate as it was for the position and 

attitude estimates. Indeed, the pessimistic velocity covariance profiles do exhibit such a behavior 

once closely inspected, though with a much less severe dissentious nature. This is likely due to 

the fact that position and attitude estimates are much more reliant on measurement updates as 

the pseudo-range rates are not even necessary for the filter to execute properly. 

On the other hand, we can say that the attitude error is well-bonded, such that filter tuning 

allowed for a fair tradeoff between prediction and update reliance of the position and attitude 

state estimates. Moreover, the error of the attitude resembles closely the near-constant zero-

valued error exhibited by the position error. However, there appear to be some error spikes in all 

error profiles, occurring exactly at the same time for all components. These error spikes are clearly 

reflected in the estimate subplots to the left of Fig. 5.5, and their synchronization between all four 

components indicates that the attitude quaternion is retaining its normalized status even though 

no explicit normalization attempt was implemented within the algorithm. 

Overall, the OL TC EKF results appear to be an accurate reflection of the intended dynamics of 

system and how it was made to handle the various complications involved with modelling. The 

extensive filter tuning bore fruitful results as the position and attitude errors were both well-

bounded within their respective covariances, despite the some errors in particular regions. 
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V.II. OL LC LKF 

Next, the open-loop, loosely-coupled Kalman filter architecture will be examined. This 

architecture uses a linear, and hence optimal, KF to estimate the state using mechanized IMU, or 

INS, state to predict the state and then processed UWB measurements and camera quaternion 

measurements to update the state. The UWB measurements are processed using an NLS 

algorithm, working in error domain, to provide a standalone position and velocity state estimate. 

Fig. 5.6: OL LC LKF Architecture. 

According to the above-shown sensor fusion architecture from Fig. 5.6, the governing equations 

for an OL LC LKF are Eqns. 5.3, 5.4 & 5.5 below, where the measurement update is a 10x1 vector 

composed of NLS position and velocity vector estimates and four quaternion measurements. 

Concurrently, the relationship between the state vector ‘𝑥⃗’ and the measurement vector ‘𝑦⃗’ is 

fully linear and the state-to-measurement matrix ‘[𝑯]’ is a 10x10 identity. Thus, due to the NLS 

estimation, it is possible to make use of an LKF, which is an optimal estimator. 

                           e-Domain NLS [∆𝑃⃗⃗ ∆𝑉⃗⃗]𝑇 = [[𝑮]𝑇[𝑾][𝑮]]
−𝟏

[𝑮]𝑇[𝑾][∆𝜌⃗ ∆𝜌̇⃗]
𝑇

 

                     [𝑃⃗⃗ 𝑉⃗⃗]𝑁𝐿𝑆
𝑇

= [∆𝑃⃗⃗ ∆𝑉⃗⃗]𝑇 + [𝑃⃗⃗ 𝑉⃗⃗]0
𝑇

 

(5.3) 

                           Prediction                𝑥⃗𝑘
− = [𝑨]𝑥⃗𝑘−1

+ + [𝑩]𝑢⃗⃗𝑘−1 

[𝑷𝒌
−] = [𝑨][𝑷𝒌−𝟏

+ ][𝑨]−𝟏 + [𝑸] 

(5.4) 

                           Update                       [𝑲] = [𝑷𝒌
−][[𝑷𝒌

−] + [𝑹]]
−𝟏

 

𝑥⃗𝑘
+ = 𝑥⃗𝑘

− + [𝑲](𝑦⃗𝑘 − 𝑥⃗𝑘
−) 

[𝑷𝒌
+] = [[𝑰𝟏𝟎] − [𝑲]][𝑷𝒌

−] 

(5.5) 
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For this particular NLS, the NLS Jacobian ‘[𝑮]’ is as follows, which is numerically determined at 

every iteration’s initial guess for the state estimate [𝑃⃗⃗ 𝑉⃗⃗]0
𝑇

. 

[𝑮] =

[
 
 
 
 
 
 
 
 
 
 
𝑥 − 𝑥1

𝜌1

𝑦 − 𝑦1

𝜌1

𝑧 − 𝑧1

𝜌1

⋮ ⋱ ⋮
𝑥 − 𝑥5

𝜌5

𝑦 − 𝑦5

𝜌5

𝑧 − 𝑧5

𝜌5

0

𝑉𝑥
𝜌1

    
𝑉𝑦

𝜌1
    

𝑉𝑧
𝜌1

⋮ ⋱ ⋮
𝑉𝑥
𝜌5

𝑉𝑦

𝜌5

𝑉𝑧
𝜌5

𝑥 − 𝑥1

𝜌1

𝑦 − 𝑦1

𝜌1

𝑧 − 𝑧1

𝜌1

⋮ ⋱ ⋮
𝑥 − 𝑥5

𝜌5

𝑦 − 𝑦5

𝜌5

𝑧 − 𝑧5

𝜌5 ]
 
 
 
 
 
 
 
 
 
 

10×10

 

Again, we compare the state estimate with the GT state and the error with the state covariance 

in Figs. 5.7, 5.8, & 5.9 below, noting that with this architecture, we have a standalone state 

estimate that uses only aiding sensor information. This estimate can be examined independently, 

but is typically neglected when less than the necessary number of measurements is available. This 

is because the NLS cannot be run if the necessary and sufficient number of measurements is not 

available, which is the case for this particular application except every 100 steps. 

 Fig. 5.7: OL LC LKF Position Estimate and Error. 

Fig. 5.7 clearly shows that the filter was not as properly tuned as it was for the OL TC EKF case, 

obviously because the covariance matrices were carried-on from the OL TC EKF to this OL LC LKF. 

Hence, although this estimate is optimal, the error is not as well-bounded within the covariance 

profiles, especially the z-axis error, which crosses the covariance profiles every cycle of the motion 

or so (i.e., every 10 [s]). 
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Additionally, we can see that while the TC EKF position estimates exhibited only noise-like 

deviation at the peaks and troughs, the LC LKF counterpart exhibited both that and a bias-like 

offset. Even beyond that, the z-axis estimate is clearly severely flawed, which heavily 

compromises the entire trajectory estimate. As mentioned prior, the z-axis estimates suffered 

from the GDOP effect due to the placement of the UWB transmitters. This error likely combined 

with the inherent suboptimality of the e-domain NLS to severely impede upon the accuracy of the 

z-axis position update. This is because in an LC KF, the main disadvantage, aside form the lack of 

updates due to the unavailability of the needed number of measurements, is that the update is 

only as accurate as the iteration error threshold is. Hence, there is a significant tradeoff between 

the number of iterations, or computational load, and the accuracy of the update, all to have a 

standalone aiding sensor estimate of the same state. 

Fig. 5.8: OL LC LKF Velocity Estimate and Error. 

On the other hand, the LC LKF estimates and errors for the velocity showcased in Fig. 5.8 exhibited 

the same overall behavior as its TC EKF counterpart, spare for a greater bias-like offset in the z-

axis velocity estimate, which may again be attributed to the postulated GDOP and NLS errors 

compounding on one another to impede on the z-axis estimates of linear vectors. 

Finally, for the attitude quaternion estimate, since the measurement update and overall filter 

dynamics and covariance characteristics were identical to the TC EKF, since the EKF Jacobian had 

a 4x4 identity mapping the HFVPS output of the quaternions onto the INS quaternion estimate, 

we expect the LC LKF and TC EKF to yield the same exact quaternion estimates. Thus, we may say 

that the attitude estimation for the TC EKF is simply an LC LKF estimate, which is an optimal 

integrated attitude estimation filter that also provides a standalone attitude estimate purely using 

aiding sensors. 
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Fig. 5.9: OL LC LKF Attitude Estimate and Error. 

Simply contrasting the subplots of Figs. 5.5 & 5.9 indicates that our earlier conclusions regarding 

the matching of the attitude estimation of both the TC EKF and LC LKF hold true, meaning that the 

comments made about the TC EKF attitude estimates and error-covariance behaviors hold true, 

identically, for the LC LKF attitude estimates and error-covariance behaviors. 

V.III. OL TC UKF 

Finally, the open-loop, tightly-coupled unscented Kalman filter architecture will be examined. This 

architecture, akin to the OL TC EKF, uses a nonlinear, suboptimal KF to estimate the state using 

mechanized IMU, or INS, state to predict the state and then using raw UWB measurements and 

camera quaternion measurements to update the state. However, the main overarching difference 

is that a UKF employs an alternative method of capturing the covariance. 

When examining the EKF, it was said that the reason a numerically determined Jacobian was 

necessary in the update block was to determine the Kalman gain and state covariance matrices. 

However, the innovation term, or error between the aiding measurement vector and the 

measurement vector simulated for the predicted state (i.e., 𝑦⃗𝑘 − ℎ(𝑥⃗𝑘
−)), does not require the 

use of a Jacobin, though it could be used. Hence, the source of the suboptimality, or nonlinearity, 

in the filter is the need to use a Jacobian to compute [𝑲] and [𝑷]. 

The UKF offers an alternative method of computing both [𝑲] and [𝑷] by spreading sigma points, 

or state estimates offset from the previous state estimate, and then propagating them all within 

the prediction block to allow the filter a sufficiently large distribution margin of the covariance. 

This allows the UKF to achieve a higher-order linear approximation of a nonlinear state compared 

to the EKF’s 1st-order TSE approximation. Thus, it is definitely superior for capturing nonlinearities. 
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Fig. 5.10: OL TC UKF Architecture. 

According to the above-shown sensor fusion architecture from Fig. 5.10, the governing equations 

for an OL TC UKF are Eqns. 5.6, 5.7 & 5.8 below, where the measurement update is a 14x1 vector 

composed of five pseudo-range, five pseudo-range rate, and four quaternion measurements. 

Concurrently, by Eqns. 4.1 & 4.2, the relationship between the state vector ‘𝑥⃗’ and the 

measurement vector ‘𝑦⃗’ is nonlinear, spare for the attitude estimation part. Thus, it is necessary 

to use a nonlinear Kalman filter since the update block is nonlinear. 

However, unlike for the EKF, where we required the Jacobian ‘[𝑯|𝑥⃗𝑘
−]’, for the UKF, we use a sigma 

spread block. In this block, a deterministic sampling technique known as the “Unscented 

Transform” selects a set of sigma points around the mean, which is the previous step’s state 

estimate. This sigma spread enables the prediction block to use standard state propagation to 

predict the state and state covariance of (2𝑛 + 1) points for an n-dimensional state vector. 

                           Sigma Spread  𝑥⃗𝑖,𝑘−1
+ =

{
  
 

  
 
𝑥⃗𝑘−1

+                                                   , 𝑖 = 0                     

𝑥⃗𝑘−1
+ + (√(𝑛 + 𝜅)[𝑷𝒌−𝟏

+ ])
(:,𝑖)

  , 𝑖 = 1,… , 𝑛           

𝑥⃗𝑘−1
+ + (√(𝑛 + 𝜅)[𝑷𝒌−𝟏

+ ])
(:,𝑖)

  , 𝑖 = 𝑛 + 1,… , 2𝑛

 (5.6) 

                           Prediction              𝑥⃗𝑖,𝑘
− = [𝑨]𝑥⃗𝑖,𝑘−1

+ + [𝑩]𝑢⃗⃗𝑘−1 

𝑥⃗𝑘
− =

1

𝑛 + 𝜅
(𝜅𝑥⃗0,𝑘

− +
1

2
∑𝑥⃗𝑖,𝑘

−

2𝑛

𝑖=1

) 

[𝑷𝒌
−] =

1

𝑛 + 𝜅
(𝜅[𝑥⃗0,𝑘

− − 𝑥⃗𝑘
−] [[𝑥⃗0,𝑘

− − 𝑥⃗𝑘
−]]

𝑇
+

1

2
∑[𝑥⃗𝑖,𝑘

− − 𝑥⃗𝑘
−] [[𝑥⃗𝑖,𝑘

− − 𝑥⃗𝑘
−]]

𝑇
2𝑛

𝑖=1

) 

(5.7) 
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                           Update                                𝑦⃗𝑖,𝑘
− = ℎ(𝑥⃗𝑖,𝑘

− ) 

𝑦⃗𝑘
− =

1

𝑛 + 𝜅
(𝜅𝑦⃗0,𝑘

− +
1

2
∑𝑦⃗𝑖,𝑘

−

2𝑛

𝑖=1

) 

[𝑷𝒚𝒚] =
1

𝑛 + 𝜅
(𝜅[𝑦⃗0,𝑘

− − 𝑦⃗𝑘
−] [[𝑦⃗0,𝑘

− − 𝑦⃗𝑘
−]]

𝑇
+

1

2
∑[𝑦⃗𝑖,𝑘

− − 𝑦⃗𝑘
−] [[𝑦⃗𝑖,𝑘

− − 𝑦⃗𝑘
−]]

𝑇
2𝑛

𝑖=1

) 

[𝑷𝒙𝒚] =
1

𝑛 + 𝜅
(𝜅[𝑥⃗0,𝑘

− − 𝑦⃗𝑘
−] [[𝑥⃗0,𝑘

− − 𝑦⃗𝑘
−]]

𝑇
+

1

2
∑[𝑥⃗𝑖,𝑘

− − 𝑥⃗𝑘
−] [[𝑦⃗𝑖,𝑘

− − 𝑦⃗𝑘
−]]

𝑇
2𝑛

𝑖=1

) 

[𝑷𝒗𝒗] = [𝑷𝒚𝒚] + [𝑹] 

[𝑲] = [𝑷𝒙𝒚][𝑷𝒗𝒗]
−𝟏 

𝑥⃗𝑘
+ = 𝑥⃗𝑘

− + [𝑲](𝑦⃗𝑘 − 𝑦⃗𝑘
−) 

[𝑷𝒌
+] = [𝑷𝒌

−] − [𝑲][𝑷𝒗𝒗][𝑲]−𝟏 

(5.8) 

In Eq. 5.6, the integer scaling parameter ‘𝜅’ is set to 0 to ensure that the mean 𝑥⃗𝑘−1
+  is assigned to 

𝑥⃗0,𝑘
− , where we note that for this particular scenario, the value of ‘𝑛’ is 10. Thus, the sigma spread 

block will output 21 different sigma points. This resulted in an extremely high computational load, 

so great that the UKF alone took as much time to run as both other filters combined. 

Fig. 5.11: OL TC UKF Position Estimate and Error. 
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An examination of Fig. 5.11 above easily shows that the OL TC UKF is undisputedly the superior 

filter, as its position state estimate and the GT position state are almost indistinguishable from 

each other, with respect to the expected and negligible noise, with a near-zero error throughout. 

However, a point to note is that the z-axis position estimate shows a clear and true bias-like offset 

at all times from the GT value. This error is at the order of magnitude of 0.1 [m], meaning that 

even with it, this estimate still reigns superior. 

Moreover, despite the updates arriving every 100 steps for the position, the UKF proved its ability 

to capture the covariance with greater accuracy, such that the covariance profile drifts between 

the updates are almost indiscernible. However, since we used the OL TC EKF covariances, the filter 

appears to be slightly pessimistic, meaning that these already superb estimates could be further 

refined with a meticulous filter tuning process. 

 Fig. 5.12: OL TC UKF Velocity Estimate and Error. 

A comparison between Figs. 5.12 & 5.5 shows that the UKF was once again superior at capturing 

the intricacies of the highly nonlinear motion profile, as the UKF velocity estimates better aligned 

themselves, all axes, with the GT velocity state compared to the EKF velocity estimates. However, 

the issue of the bias-like offset in velocity still persists, particularly for the z-axis estimates. In fact, 

the z-axis UKF estimates for linear states appear to be the major, and truthfully only, source of 

appreciable error. 

As discussed earlier, the UKF was highly sensitive to the nonlinearities of the states it estimated, 

meaning that the aforementioned GDOP effect on the z-axis measurements is pronounced 

compared to the errors in the other two axes. 

Moreover, from both Figs. 5.11 & 5.12, the covariance profiles converged to a much lower steady-

state value compared to the other two architectures. 
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 Fig. 5.13: OL TC UKF Attitude Estimate and Error. 

Again, from Fig. 5.13, it can be said that the UKF achieved a much more accurate estimate of the 

attitude, with a nearly-zero error at all times. In fact, the subplots to the right of Fig. 5.13 clearly 

indicates the UKF’s ability to capture higher-order nonlinearities as the estimate becomes 

extremely noisy in highly nonlinear regions of the attitude profile. Also, we note that the steady-

state values of covariance profiles were, once again, lower compared to the two other filters. 
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VI. Conclusion 

In this paper, we outlined and implemented three open-loop Kalman filters, namely a tightly-coupled 

extended KF, a loosely-coupled linear KF, and a tightly-coupled unscented KF, to estimate the position, 

velocity, and attitude of a racing drone. All these filters were characterized with having a nonlinear 

measurement processing unit to integrate the IMU, UWB, and HFVPS measurements. 

Executing the three filter algorithms using the covariance matrices tuned for the OL TC EKF showed that 

the OL LC LKF should not have been a candidate for such a highly dynamic platform in the first place as it 

was inferior in almost every aspect to the other two, while the OL TC UKF was clearly the superior filter to 

both in all regards, despite the EKF holding the advantage of being the tuned filter, spare for one: 

Computational load. 

The results indicated that the TC EKF was the optimal trade-off between computational load and 

complexity and solution accuracy and reliability, as opposed to the iterative, yet linear LC KF and the 

robust and dynamic TC UKF. The former architecture offered a slight reduction in computational load and 

a standalone aiding sensor navigational solution, though at the expense of severely reduced accuracy. The 

latter offered greater sensitivity to the inherent nonlinearities of the motion with almost invariant zero-

errors, though at the expense of an inordinately huge computational. Thus, neither alternative warranted 

the need to shift from the traditional OL TC EKF due to the imbalance between their perceived pros and 

cons with respect to the application at hand. 
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