Example 2

In this second example the same centric slider-crank mechanism of the previous example is considered. However, in addition to F14 two additional forces, F13 and F12, act on the links. F12 = 100 N , F13 = 150 N and F14 = 100 N.

The free body diagrams of the links are shown below. The pin radii and the friction coefficient are that of the previous example.

The force equilibrium equations for link 4:

SFx = F34x − F14 − μG14=0       or       F34x = 100 + 0.1G14  (i)
SFy = F34y − G14 = 0       or       G14 = F34y (ii)
SMB = −sG14 − 5G14 + 5F34 = 0      or       s = 5(F34 − G14)/G14 (iii)

If s is within the physical boundaries of the two contacting surfaces, the above equations are valid (contact Mode I or II will exist). Also:

\displaystyle {\text{F}}_{\text{34}}=\sqrt{{{{\text{F}}_{\text{34x}}}^2+{{\text{F}}_{\text{34y}}}^2}} (iv)

For link 3:

SFx = −F34x + F13cos(210°) + F23x = 0       or       F23x = F34x + 129.904 (v)
SFy = F34y + F13sin(210°) + F23y = 0       or      F23y = 75 − F34y (vi)
SMB = −a3F34ycosθ13 − a3F34xsinθ13 − 25F23 − 5F34 − 400F13sin(210° − θ13) = 0      or
783.045F34y − 163.829F34x − 25F23 − 5F34 − 40005.218 = 0
(vii)

and

\displaystyle {\text{F}}_{\text{23}}=\sqrt{{{{\text{F}}_{\text{23x}}}^2+{{\text{F}}_{\text{23y}}}^2}} (viii)

For link 2:

SFx = −F23x + G12x + F12cos(−60°) = 0       or       G12x = F23x − 50 (ix)
SFy = F23y + G12y + F12sin(−60°) = 0       or      G12y = F23x + 86.603 (x)
SMA0 = T12 + 100F12sin(−60° − θ12) + 200F23ysin(θ12) − 200F23xcos(θ12) − 25F23 − 5G12 = 0      or
T12 = 9063.078 − 163.830F23x + 114.715F23y +25F23 + 5G12
(xi)

and

\displaystyle {\text{G}}_{\text{12}}=\sqrt{{{{\text{G}}_{\text{12x}}}^2+{{\text{G}}_{\text{12y}}}^2}} (xii)

In the equations the forces are in N (Newton) and moments are in N·mm. There are 12 equations in 12 unknowns (F34x , F34y , F34, F23x, F23y, F23, G12x , G12y, G12 , G14 , s and T12).   Equations (iv, viii, xii) are non-linear, whereas the remaining equations are linear. Direct solution of these equations will not be attempted. An iterative procedure is more suitable in such cases.

Substituting Equations (i) and (ii) into equation (vii) and solving for G14 yields:

G14 = 265.872 + 0.033F23 + 0.007F34 (xiii)

The last two terms of equation (xiii) are due to friction at the joints and it is logical that these terms will be small in comparison to the first term, which is the value of G14 when μ = 0. As the first guess for G14, if we neglect the effect of friction, the value of G14 can be easily determined (G14 = 265.872 N). We can than solve for F34x using equation (i), F34y and F34 from equation (ii), F34y = G14 then use equation (iv). Next using equations (v, vi, viii)  we can solve for F23x , F23y , F23 . The values of F23 and F34 thus found can now be used to refine the value of G14. The procedure is repeated until there is no significant change in G14. The iteration steps for this example are shown in the table below. The procedure in general rapidly converges, since the friction effect in mechanisms is quite small (if the mechanism is not at a critical position). Also one can see the effect of friction on the solution.

Force                                   2. Step       3. Step      4. Step         5. Step

G14(eq. xiii) (G140 = F34y)    265.872      278.484     278.854         278.865

F34x (eq. iv)                        126.587      127.848      127.885        127.886

F34y (eq. iv)                         294.469     306.429      306.780        306.791

F23x (eq. v)                          256.491     257.752      257.789        257.790

F23y (eq. vi)                        -190.872    -203.484     -203.854       -203.865

F23  (eq. vii)                         319.718      328.393      328.652       328.659

(All values in Newton)

After this iterative method of finding F34, G14 and F23, one can than solve for the other unknowns from the remaining equations:

s = 0.96 mm  (eq. iii),     G12x = 207.790 N  (eq. ix),     G12y = −117.262 N (eq. x)     and     G12 = 238.594 N (eq. xii)

T12 = 47.148 N·m (CW)

Since the friction effect is usually small, the above iterative method will converge to a solution in very few steps.