4.2 VELOCITY AND ACCELERATION ANALYSIS OF MECHANISMS-2
Example:
As for the velocity and acceleration analysis of a four-bar mechanism, a similar approach can be used. The loop closure equation and its complex conjugate is:
a2eiθ12 + a3eiθ13 = a1 + a4eiθ14
a2e−iθ12 + a3e−iθ13 = a1 + a4e-iθ14
The first derivative of the loop closure equation (velocity loop equation) is:
ia2ω12eiθ12 + ia3ω13eiθ13 = ia4ω14eiθ14
−ia2ω12e−iθ12 − ia3ω13e−iθ13 = −ia4ω14e−iθ14
Note that the velocity loop equation in vector form is:
vA + vB/A = vB
In complex numbers, the magnitude and direction of each velocity term can easily be identified. The velocity loop equation is a simple way of writing the velocity vector polygon. The velocity loop equation and its complex conjugate can be used to solve for the speed variables ω13 and ω14 for a given input speed ω12, provided that the position variables θ13 and θ14 are solved for a given input angle θ12:
\displaystyle {{\text{ω}}_{{13}}}=\frac{{\left| {\begin{array}{cc} {-{{\text{a}}_{2}}{{\text{ω}}_{{12}}}{{\text{e}}^{{\text{i}{{\text{θ}}_{{12}}}}}}} & {-{{\text{a}}_{4}}{{\text{e}}^{{\text{i}{{\text{θ}}_{{14}}}}}}} \\ {-{{\text{a}}_{2}}{{\text{ω}}_{{12}}}{{\text{e}}^{{-\text{i}{{\text{θ}}_{{12}}}}}}} & {-{{\text{a}}_{4}}{{\text{e}}^{{-\text{i}{{\text{θ}}_{{14}}}}}}} \end{array}} \right|}}{{\left| {\begin{array}{cc} {{{\text{a}}_{3}}{{\text{e}}^{{\text{i}{{\text{θ}}_{{13}}}}}}} & {-{{\text{a}}_{4}}{{\text{e}}^{{\text{i}{{\text{θ}}_{{14}}}}}}} \\ {{{\text{a}}_{3}}{{\text{e}}^{{-\text{i}{{\text{θ}}_{{13}}}}}}} & {-{{\text{a}}_{4}}{{\text{e}}^{{-\text{i}{{\text{θ}}_{{14}}}}}}} \end{array}} \right|}}=\frac{{{{\text{a}}_{2}}{{\text{a}}_{4}}\left( {{{\text{e}}^{{\text{i}\left( {{{\text{θ}}_{{12}}}-{{\text{θ}}_{{14}}}} \right)}}}-{{\text{e}}^{{-\text{i}\left( {{{\text{θ}}_{{12}}}-{{\text{θ}}_{{14}}}} \right)}}}} \right)}}{{{{\text{a}}_{3}}{{\text{a}}_{4}}\left( {-{{\text{e}}^{{-\text{i}\left( {{{\text{θ}}_{{14}}}-{{\text{θ}}_{{13}}}} \right)}}}+{{\text{e}}^{{\text{i}\left( {{{\text{θ}}_{{14}}}-{{\text{θ}}_{{13}}}} \right)}}}} \right)}}{{\text{ω}}_{{12}}}=\frac{{{{\text{a}}_{2}}}}{{{{\text{a}}_{3}}}}\frac{{\sin \left( {{{\text{θ}}_{{12}}}-{{\text{θ}}_{{14}}}} \right)}}{{\sin \left( {{{\text{θ}}_{{14}}}-{{\text{θ}}_{{13}}}} \right)}}{{\text{ω}}_{{12}}}
Similarly:
\displaystyle {{\text{ω}}_{{14}}}=\frac{{\left| {\begin{array}{cc} {{{\text{a}}_{3}}{{\text{e}}^{{\text{i}{{\text{θ}}_{{13}}}}}}} & {-{{\text{a}}_{2}}{{\text{ω}}_{{12}}}{{\text{e}}^{{\text{i}{{\text{θ}}_{{12}}}}}}} \\ {{{\text{a}}_{3}}{{\text{e}}^{{-\text{i}{{\text{θ}}_{{13}}}}}}} & {-{{\text{a}}_{2}}{{\text{ω}}_{{12}}}{{\text{e}}^{{-\text{i}{{\text{θ}}_{{12}}}}}}} \end{array}} \right|}}{{\left| {\begin{array}{cc} {{{\text{a}}_{3}}{{\text{e}}^{{\text{i}{{\text{θ}}_{{13}}}}}}} & {-{{\text{a}}_{4}}{{\text{e}}^{{\text{i}{{\text{θ}}_{{14}}}}}}} \\ {{{\text{a}}_{3}}{{\text{e}}^{{-\text{i}{{\text{θ}}_{{13}}}}}}} & {-{{\text{a}}_{4}}{{\text{e}}^{{-\text{i}{{\text{θ}}_{{14}}}}}}} \end{array}} \right|}}=\frac{{{{\text{a}}_{3}}{{\text{a}}_{2}}\left( {-{{\text{e}}^{{-\text{i}\left( {{{\text{θ}}_{{12}}}-{{\text{θ}}_{{13}}}} \right)}}}+{{\text{e}}^{{\text{i}\left( {{{\text{θ}}_{{12}}}-{{\text{θ}}_{{13}}}} \right)}}}} \right)}}{{{{\text{a}}_{3}}{{\text{a}}_{4}}\left( {-{{\text{e}}^{{-\text{i}\left( {{{\text{θ}}_{{14}}}-{{\text{θ}}_{{13}}}} \right)}}}+{{\text{e}}^{{-\text{i}\left( {{{\text{θ}}_{{14}}}-{{\text{θ}}_{{13}}}} \right)}}}} \right)}}{{\text{ω}}_{{12}}}=\frac{{{{\text{a}}_{2}}}}{{{{\text{a}}_{4}}}}\frac{{\sin \left( {{{\text{θ}}_{{12}}}-{{\text{θ}}_{{13}}}} \right)}}{{\sin \left( {{{\text{θ}}_{{14}}}-{{\text{θ}}_{{13}}}} \right)}}{{\text{ω}}_{{12}}}
If the velocity of the coupler point C is to be determined, first wee need its position:
rC = a2eiθ12 + b3ei(θ13 + β)
The derivative of the position vector will give us the velocity vector:
vC = \displaystyle {\dot{\text{x}}} C + i \displaystyle {\dot{\text{y}}} C = ia2ω12eiθ12 + ib3ω13ei(θ13 + β)
which is the vector velocity equation:
vC = vA + vC/A
In terms of Cartesian components:
\displaystyle {\dot{\text{x}}} C = −ia2ω12sinθ12 − ib3ω13sin(θ13 + β)
\displaystyle {\dot{\text{y}}} C = a2ω12cosθ12 + b3ω13cos(θ13 + β)
If the position and the velocity loop equations are solved, one can easily determine the terms on the right hand side of the equations. Once the x and y components of the velocity is determined one can as well transform the velocity vector into polar form to yield the magnitude and direction by writing the velocity vector in the form:
vC = vCeiη
where vC = \displaystyle \sqrt{{{{{\dot{\text{x}}}}_{\text{C}}}^{2}+{{{\dot{\text{y}}}}_{\text{C}}}^{2}}} = magnitude of velocity, and η = tan-1( \displaystyle {\dot{\text{y}}} C/ \displaystyle {\dot{\text{x}}} C) = the angle the velocity vector makes with respect to positive x-axis.
For the acceleration analysis, the second derivative of the loop closure equation (acceleration loop equation) is:
ia2α12eiθ12 − a2ω122eiθ12 + ia3α13eiθ13 − a3ω132eiθ13 = ia4α14eiθ14 − a4ω142eiθ14
−ia2α12e−iθ12 − a2ω122e−iθ12 − ia3α13e−iθ13 − a3ω132e−iθ13 = −ia4α14e−iθ14 − a4ω142e−iθ14
Note that the acceleration loop equation is nothing but the acceleration vector equation in the form:
atA + anA + atB/A + anB/A = atB + anB
Rearranging the terms so that only the unknown acceleration variables are on the left hand side of the equation:
ia3α13eiθ13 − ia4α14eiθ14 = −ia2α12eiθ12 + a2ω122eiθ12 + a3ω132eiθ13 − a4ω142eiθ14
−ia3α13e−iθ13 + ia4α14e−iθ14 = ia2α12e−iθ12 + a2ω122e−iθ12 + a3ω132e−iθ13 − a4ω142e−iθ14
Solving the two linear equations for the acceleration variables:
α13 = \displaystyle \frac{{{{\text{a}}_{2}}{{\text{α}}_{{12}}}\sin \left( {{{\text{θ}}_{{12}}}-{{\text{θ}}_{{14}}}} \right)+{{\text{a}}_{2}}{{\text{ω}}_{{12}}}^{2}\cos \left( {{{\text{θ}}_{{12}}}-{{\text{θ}}_{{14}}}} \right)+{{\text{a}}_{3}}{{\text{ω}}_{{13}}}^{2}\cos \left( {{{\text{θ}}_{{13}}}-{{\text{θ}}_{{14}}}} \right)-{{\text{a}}_{4}}{{\text{ω}}_{{12}}}^{2}}}{{{{\text{a}}_{3}}\sin \left( {{{\text{θ}}_{{14}}}-{{\text{θ}}_{{13}}}} \right)}}
and
α14 = \displaystyle \frac{{{{\text{a}}_{2}}{{\text{α}}_{{12}}}\sin \left( {{{\text{θ}}_{{12}}}-{{\text{θ}}_{{13}}}} \right)+{{\text{a}}_{2}}{{\text{ω}}_{{12}}}^{2}\cos \left( {{{\text{θ}}_{{12}}}-{{\text{θ}}_{{13}}}} \right)+{{\text{a}}_{3}}{{\text{ω}}_{{13}}}^{2}-{{\text{a}}_{4}}{{\text{ω}}_{{14}}}^{2}\cos \left( {{{\text{θ}}_{{13}}}-{{\text{θ}}_{{14}}}} \right)}}{{{{\text{a}}_{4}}\sin \left( {{{\text{θ}}_{{14}}}-{{\text{θ}}_{{13}}}} \right)}}
The acceleration of the coupler point C can be obtained from the second derivative of the position vector:
aC = ia2α12eiθ12 − a2ω122eiθ12 + ib3α13ei(θ13 + β) − b3ω132ei(θ13 + β)
Hence, after the solution of the position, velocity and acceleration loop equations, one can easily determine the position, velocity and acceleration of any point in any one of the links of the mechanism. The graphical solution of the velocity and acceleration vector equations are as shown below.
The velocity and acceleration loop equations are always linear in terms of the speed and acceleration variables. It is the solution of the loop equations that require more effort since they are nonlinear. The above procedure can be explained step by step as follows:
Consider the inverted slider-crank mechanism shown below. The loop closure equation was:
a2eiθ12 = a1 + a4eiθ14 + is43eiθ14
The velocity loop equation will be obtained by differentiating:
iω12a2eiθ12 = iω14a4eiθ14 − ω14s43eiθ14 + i \displaystyle {\dot{\text{s}}}43eiθ14
or, regrouping terms:
iω12a2eiθ12 = iω14(a4 + is43)eiθ14 + i \displaystyle {\dot{\text{s}}}43eiθ14
This velocity loop equation is the velocity vector equation:
vA2 = vA3 = vA4 + vA3/A4
The first term is the velocity of point A2 on link 2, whose magnitude is equal to the distance from the centre of rotation (|A0A| = a2) times the angular speed of link 2 (w12). Since points A2 and A3 are permanently coincident points, their velocities are equal. The second term is the velocity of point A4 on link 4 whose magnitude is equal to the distance from the center of rotation (|B0B| = a4) times the angular speed of link 4 (w14). The third term is the relative velocity of point A3 with respect to link 4 whose direction is along the slider axis between links 3 and 4.
The acceleration loop equation is:
iα12a2eiθ12 − ω122a2eiθ12 = iα14(a4 + is43)eiθ14 − iω142(a4 + is43)eiθ14 + i \displaystyle {\ddot{\text{s}}}43eiθ14 − 2 \displaystyle {\dot{\text{s}}}43ω14eiθ14
which is the acceleration vector equation:
atA2 + anA2 = atA3 + anA3 = atA4 + anA4 + atA3/A4 + acA3/A4
The tangential and normal components of points A2 and A3 are equal. The normal and tangential components of A4 are along B0A and perpendicular to B0A respectively. The third term on the right hand side is the relative tangential acceleration which has the magnitude \displaystyle {\ddot{\text{s}}}43 and along the slider axis. The last term is the Coriolis acceleration component with magnitude 2 \displaystyle {\dot{\text{s}}}43ω14 perpendicular to the slider axis.
Graphical velocity and acceleration analysis of the mechanism is shown for the position given below. Note that the velocity vector equation used is:
vA4 = vA3 + vA4/3
Since vA3 = vA2, the magnitude of this vector is |AA0|ω12. vA4 is perpendicular to AB0, vA4/3 is parallel to the slider axis. First vA3 is drawn using a certain scale. Then a line parallel to the slider axis is drawn from the tip of vA3 and a line perpendicular to AB0 is drawn from the starting point of vA3. The intersection of these to lines gives the solution, the magnitude and the direction of vA4 and vA4/3 can be determined. When vA4 is determined, ω13 can be determined by dividing vA4 with |AB0| distance. From the velocity polygon we also note that ω13 must be counter-clockwise for point A4 to have the shown velocity direction.
For the acceleration analysis, the acceleration vector equation is rewritten as:
atA4 + anA4 = atA3 + anA3 + acA4/3 + atA4/3
so that there is one unknown on each side of the equation. We start with the known vector atA3 = atA2 (its magnitude is |AA0|α12, and its direction is perpendicular to AA0 in the sense of α12), and anA3 = anA2 (its magnitude is |AA0|ω122, and its direction is along AA0, always directed to the centre of rotation, A0). We draw these vectors using a certain scale ka, Then we determine the magnitude and direction of Coriolis acceleration, acA4/3. Its magnitude is 2ω13vA4/3 (the angular speed that changes the direction of the relative velocity must be used). The direction of coriolis acceleration is determined by rotating the relative velocity vector vA4/3 by 90º in the sense of ω13. After drawing acA4/3, we draw a line tangent to the slider axis which is the direction of atA4/3. Next, we consider the left hand side of the equation. We draw the normal acceleration anA4 since its of magnitude is |AB0|ω132 (or = vA42/|AB0|), and its direction is along AB0 towards B0. Then we draw a line normal to the line AB0, which is the direction of atA4 (of unknown magnitude). The point of intersection of the two lines is the solution of the acceleration polygon. This procedure is explained in step as follows:
In the following examples the displacement, velocity and acceleration analysis of some mechanisms will be shown with numerical values using graphical or analytical methods.