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Field

Example

A set is a collection of objects, either concrete or abstract.

Definition

A field is a set F , together with two mappings of F × F → F , called
addition and multiplication, written as (a, b)→ a+ b and (a, b)→ ab
respectively with the following properties:

Addition:

(A1) a+ b = b+ a for all a, b ∈ F (commutativity)

(A2) a+ (b+ c) = (a+ b) + c for all a, b, c ∈ F (associativity)

(A3) There is an element in F , denoted by 0F , such that a+ 0F = a
∀a ∈ F (additive identity)

(A4) For each a ∈ F there is an element in F , denoted by −a, such
that a+ (−a) = 0F (additive inverse)
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Field continued..

Multiplication:

(M1) ab = ba for all a, b ∈ F (commutativity)

(M2) a(bc) = (ab)c for all a, b, c ∈ F (associativity)

(M3) There is an element in F , denoted by 1F , such that a1F = a
∀a ∈ F (multiplicative identity)

(M4) For each a 6= 0F there is an element in F , denoted by a−1, such
that aa−1 = 1F (multiplicative inverse)

(D1) a(b+ c) = ab+ ac ∀a, b, c (distributive law).
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Field continued..

Example

Set of real numbers R with standard addition and multiplication.

Example

Set of binary numbers with modulo 2 addition and multiplication.

F = {0, 1}
+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1
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Field continued..

Example

Let F = R× R. Let us define + and · as:
x+ y := (x1 + y1, x2 + y2),
x · y := (x1y1 − x2y2, x1y2 + x2y1),
where x = (x1, x2) ∈ F, y = (y1, y2) ∈ F .

Note that this is nothing but complex number field C. Then 0F = (0, 0)
and 1F = (1, 0).

Exercise

Let F = (0,∞) = R+ (positive real numbers) Given x+ y := xy,
x · y := eln(x) ln(y), show that F satisfies the axioms of field. Find 1F and
0F .

Question

Are polynomials a field? Are matrices a field?
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Linear Spaces

Definition

A linear space V is a set, whose elements are called vectors associated
with a field F , whose elements are called scalars. Vectors can be added
and they can be multiplied by scalars. These operations satisfy the
following properties:

Vector addition: x+ y, + : V × V → V

(A1) x+ y = y + x ∀x, y ∈ V (commutativity)

(A2) x+ (y + z) = (x+ y) + z ∀x, y, z ∈ V (associativity)

(A3) x+ 0 = x ∀x ∈ V (additive identity)

(A4) x+ (−x) = 0 ∀x ∈ V (additive inverse)
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Linear Spaces

Scalar multiplication: ax, · : F × V → V

(M1) a(bx) = (ab)x for all a, b ∈ F , x ∈ V (associativity)

(M2) a(x+ y) = ax+ ay for all a ∈ F , x, y ∈ V (distributive)

(M3) (a+ b)x = ax+ bx for all a, b ∈ F , x ∈ V (distributive)

(M4) 1x = x (unit rule)

Example

Show that 0x = 0
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Linear Spaces

Example

Set of all vectors (a1, a2, . . . , an) with ai ∈ F . Addition, multiplication are
defined componentwise. This space is denoted as Fn. Let x, y ∈ Fn

x = (a1, a2, . . . , an), y = (b1, b2, . . . , bn)
Addition: x+ y := (a1 + b1, a2 + b2, . . . , an + bn)
Multiplication: cx := (ca1, ca2, . . . , can)

Most common examples are Rn and Cn.
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Linear Spaces

Example

Set of all real valued functions t→ f(t) defined on the real line F = R.

Example

Set of all polynomials with degree n with coefficients in F .

Example

Set of all polynomials with degree less than n with coefficients in F . Note
that this linear space is a subset of the previous one for F = R.

E. Özkan EE 501 Linear Systems Theory November 5, 2018 9 / 49



Linear Spaces

Example

Set of all real valued functions t→ f(t) defined on the real line F = R.

Example

Set of all polynomials with degree n with coefficients in F .

Example

Set of all polynomials with degree less than n with coefficients in F . Note
that this linear space is a subset of the previous one for F = R.
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Linear Spaces

Definition

Let V be a linear space defined over field F , denoted by (V, F ). A subset
W of V is called a subspace if sums and scalar multiples of elements of W
belong to W . That is,

(S1) w1 + w2 ∈W ∀w1, w2 ∈W
(S2) cw ∈W ∀w ∈W and ∀c ∈ F

Remark

Subset has to be closed under addition and scalar multiplication. All other
properties are inherited from the original linear space.
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Linear Spaces

Example

linear space V = R2;
subspace W = [a 0]T : a ∈ R

Example

linear space V = R2;
subspace W = [a 1]T : a ∈ R

Example

linear space V = set of all real valued functions t→ f(t);
subspace W1 = set of all continuous functions,
subspace W2 = set of all functions periodic with π.

E. Özkan EE 501 Linear Systems Theory November 5, 2018 11 / 49



Linear Spaces

Example

linear space V = R2;
subspace W = [a 0]T : a ∈ R

Example

linear space V = R2;
subspace W = [a 1]T : a ∈ R

Example

linear space V = set of all real valued functions t→ f(t);
subspace W1 = set of all continuous functions,
subspace W2 = set of all functions periodic with π.

E. Özkan EE 501 Linear Systems Theory November 5, 2018 11 / 49



Linear Spaces

Example

linear space V = R2;
subspace W = [a 0]T : a ∈ R

Example

linear space V = R2;
subspace W = [a 1]T : a ∈ R

Example

linear space V = set of all real valued functions t→ f(t);
subspace W1 = set of all continuous functions,
subspace W2 = set of all functions periodic with π.
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Linear Spaces

Remark

0 vector itself is a subspace and it is the smallest subspace.

Definition

The sum of two subsets Y and Z of a linear space X, denoted as Y + Z,
is the set of all vectors of form y + z, y ∈ Y , z ∈ Z.

Example

Show that Y + Z is a linear subspace of X if Y and Z are
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Linear Spaces

Example

Prove that if Y and Z are subspaces of linear space X, so is their
intersection Y ∩ Z.

Example

If Y and Z are subspaces of linear space X, is their union Y ∪ Z a
subspace?
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Linear Spaces

Definition

Let (V, F ) and (W,F ) be two linear spaces defined over the same scalar
field F . The product space of (V, F ) and (W,F ) is defined as

V ×W = {(v, w) : v ∈ V,w ∈W}
(v, w) + (x, y) := (v + x,w + y) (vector addition)

a(v, w) := (av, aw) (scalar multiplication)
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Linear Spaces

Definition

A linear combination of n vectors x1, x2, , . . . , xn of a linear space C is a
vector of the form a1x1,+a2x2+, . . . ,+anxn, where ai’s are
scalars in F .

Definition

The set of all linear combinations of x1, x2, , . . . , xn is called the span of
{x1, x2, , . . . , xn}; denoted by sp{x1, x2, , . . . , xn}.

Definition

Vectors x1, x2, , . . . , xn in X are said to be linearly independent iff
a1x1,+a2x2+, . . . ,+anxn,= 0 implies ai = 0,∀i. Otherwise, they are
linearly dependent.
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Linear Spaces

Example

i)

{[
0
1

]
,

[
1
0

]}

ii)


 1

2
3

 ,
 4

5
6

 ,
 7

8
9


Example

Consider the linear space of polynomials with degree n ≤ 2. Let subset
S={P1, P2, P3} be such that p1(t) = 1, p2(t) = t, p3(t) = t2, ∀t
Is this set linearly independent?
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Linear Spaces

Example

S={cos(t), sin(t), cos(t− π/3)}

Definition

Let V be a linear space and (finite) set of vectors S={x1, . . . , xn} be a
subset of V . S is said to be a basis for V iff

Span(S) = V

S is a linearly independent set.

Definition

A (finite dimensional) linear space V has many bases. All these bases
must have the same number of vectors. That number is called the
dimension of V .
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Linear Spaces

Example

i)

{[
0
1

]
,

[
1
0

]}
,

ii)

{[
1
1

]
,

[
2
3

]}

Definition

Ordered basis is a basis (x1, x2, . . . , xn), where basis vectors are given in a
specific ordering.

If (x1, x2, . . . , xn) is an ordered basis of V and y ∈ V , then there is a
unique n-tuple of scalars (a1, a2, . . . , an) such that y =

∑n
i=1 aixi.

Scalars (a1, a2, . . . , an) are called the components of y with respect to the
ordered basis (x1, x2, . . . , xn).
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Linear Spaces

Example

With respect to some ordered basis B1 = (x1, x2) of R2, let the vectors

y1, y2, y3 be presented by [y1]B =

[
1
1

]
, [y2]B =

[
1
0

]
, [y3]B =

[
2
3

]
.

That is, y1 = 1x1 + 1x2, y2 = 1x1 + 0x2, y3 = 2x1 + 3x2. Let our new
basis be B2 = (y1, y2). Express y3 w.r.t. this new basis.

Remark: For a given ordered basis, the representation of a vector is unique.
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Normed linear spaces

Definition

Consider a linear space V over F , where F is either R or C. Let there be
a function x→ ‖x‖ that assigns to each x ∈ V , a nonnegative real
number ‖x‖ ∈ R > 0. Such function is called a norm if it satisfies the
following properties.

(P1) ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖
(P2) ‖αx‖ = |α| ‖x‖ ∀x ∈ V and α ∈ F
(P3) ‖x‖ = 0⇔ x = 0

The expression ”‘‖x‖”’ is read ”‘the norm of x”’ and the function ‖.‖ is
said to be a norm on V .

The triplex (V, F, ‖.‖) is called a normed space.
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E. Özkan EE 501 Linear Systems Theory November 5, 2018 20 / 49



Normed linear spaces

Definition

Consider a linear space V over F , where F is either R or C. Let there be
a function x→ ‖x‖ that assigns to each x ∈ V , a nonnegative real
number ‖x‖ ∈ R > 0. Such function is called a norm if it satisfies the
following properties.

(P1) ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖
(P2) ‖αx‖ = |α| ‖x‖ ∀x ∈ V and α ∈ F
(P3) ‖x‖ = 0⇔ x = 0

The expression ”‘‖x‖”’ is read ”‘the norm of x”’ and the function ‖.‖ is
said to be a norm on V .

The triplex (V, F, ‖.‖) is called a normed space.

E. Özkan EE 501 Linear Systems Theory November 5, 2018 20 / 49



Normed linear spaces

Definition

Consider a linear space V over F , where F is either R or C. Let there be
a function x→ ‖x‖ that assigns to each x ∈ V , a nonnegative real
number ‖x‖ ∈ R > 0. Such function is called a norm if it satisfies the
following properties.

(P1) ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖
(P2) ‖αx‖ = |α| ‖x‖ ∀x ∈ V and α ∈ F
(P3) ‖x‖ = 0⇔ x = 0

The expression ”‘‖x‖”’ is read ”‘the norm of x”’ and the function ‖.‖ is
said to be a norm on V .

The triplex (V, F, ‖.‖) is called a normed space.
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Normed linear spaces

Norms can quantify distance between two points in our linear space.

The distance between x1, x2 ∈ V is the norm of the vector x1 − x2 or
x2 − x1: ‖(x1 − x2)‖.

The norm of x, ‖x‖ is the distance of x to the origin 0.

Now that we have a proper tool for measuring distance (norm), we can
begin studying the “geometry” of the space (parallelism, orthogonality,
area, volume, shape in general).

E. Özkan EE 501 Linear Systems Theory November 5, 2018 21 / 49



Normed linear spaces

Norms can quantify distance between two points in our linear space.

The distance between x1, x2 ∈ V is the norm of the vector x1 − x2 or
x2 − x1: ‖(x1 − x2)‖.

The norm of x, ‖x‖ is the distance of x to the origin 0.

Now that we have a proper tool for measuring distance (norm), we can
begin studying the “geometry” of the space (parallelism, orthogonality,
area, volume, shape in general).
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E. Özkan EE 501 Linear Systems Theory November 5, 2018 21 / 49



Normed linear spaces

Norms can quantify distance between two points in our linear space.

The distance between x1, x2 ∈ V is the norm of the vector x1 − x2 or
x2 − x1: ‖(x1 − x2)‖.

The norm of x, ‖x‖ is the distance of x to the origin 0.

Now that we have a proper tool for measuring distance (norm), we can
begin studying the “geometry” of the space (parallelism, orthogonality,
area, volume, shape in general).
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Normed linear spaces

Example

Let V = R2, F = R,

i) ‖x‖1 := |α1|+ |α2|. Is ‖.‖1 a norm?

ii) ‖x‖2 := (α2
1 + α2

2)
1
2 . Is ‖.‖2 a norm?

iii) ‖x‖∞ := max(|α1|, |α2|). Is ‖.‖∞ a norm?
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E. Özkan EE 501 Linear Systems Theory November 5, 2018 22 / 49



Normed linear spaces

Example

Let V = R2, F = R,

i) ‖x‖1 := |α1|+ |α2|. Is ‖.‖1 a norm?

ii) ‖x‖2 := (α2
1 + α2

2)
1
2 . Is ‖.‖2 a norm?

iii) ‖x‖∞ := max(|α1|, |α2|). Is ‖.‖∞ a norm?
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Normed linear spaces

All these norms can be generalized into what we call a ’p-norm’.

‖x‖ := (|α1|p + |α2|p)
1
p

.

Note that limp−→∞ ‖x‖p = ‖x‖∞.
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Normed linear spaces

p-norm:
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Normed linear spaces

Examples: On lecture notes...
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Matrix Norms

Example

Let V = Rn×m, and A = [aij ],

‖A‖ = max
i,j
|aij | is a norm.

Example

Let V = Rn×m, and A = [aij ],

‖A‖ = max
i

n∑
j=1

|aij | (abs sum of rows)

Exercise

Show that this is a norm.
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Matrix Norms

Definition

A : Rn → Rm be an m× n matrix. Let ‖.‖Rn and ‖.‖Rm denote the
norms (vector norms) in Rn and Rm respectively. The induced norm of a
matrix is defined as

‖A‖ := max
x∈Rn,x 6=0

‖Ax‖Rm

‖x‖Rn

.

Remark:

The induced matrix norm is defined in terms of vector norms. An
equivalent definition is:

‖A‖ := max
‖x‖=1

‖Ax‖ .
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Matrix Norms

Remark:

‖Ax‖ =
‖Ax‖
‖x‖

‖x‖ ( suppose ‖x‖ 6= 0)

≤
(

max
y

‖Ay‖
‖y‖

)
‖x‖

= ‖A‖ ‖x‖ ⇒ ‖Ax‖ ≤ ‖A‖ ‖x‖

Furthermore, there exists a vector x∗ such that ‖Ax∗‖ = ‖A‖ ‖x∗‖ which
may not be unique.
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Matrix Norms

Example

Choose ‖.‖2 in Rn and Rm,

‖A‖ = max
‖x‖=1

‖Ax‖ = max
‖x‖=1

√
(Ax)TAx = max

‖x‖=1

√
xTATAx
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Induced Norm Example

Consider the unit vectors in R2 with ‖x‖2 = 1, and matrix A =

[
1 4
−6 3

]
,

Note that, max ‖Ax‖2 = 6.80, and
√
λmax(ATA) = 6.80
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Induced Norm Example

Consider the unit vectors in R2 with ‖x‖∞ = 1, and matrix A =

[
1 4
−6 3

]
,

Note that, max ‖Ax‖∞ = 9.00, and maximum absolute row sum of A = 9.00
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Induced Norm Example

Consider the unit vectors in R2 with ‖x‖2 = 1, and matrix A =

 1 4
−6 3
7 4

 ,

Note that, max ‖Ax‖2 = 9.49, and
√
λmax(ATA) = 9.49
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Induced Norm Example

Consider the unit vectors in R2 with ‖x‖∞ = 1, and matrix A =

 1 4
−6 3
7 4

 ,

Note that, max ‖Ax‖∞ = 11.00, and maximum absolute row sum of A = 11.00
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Convergence

Definition

Let (V, F, ‖.‖) be a normed space. Let {vn}∞n=1 be a sequence of vectors
in V . vn ∈ V n = 1, 2, . . .. The sequence is said to be convergent to the
limit v̄ ∈ V iff ‖vn − v̄‖ → 0 as n→∞

Equivalently, given any ε > 0, ∃N (N depends on ε) such that n ≥ N
implies ‖vn − v̄‖ ≤ ε.

Remark:

A sequence that is not convergent is called divergent.
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Convergence

Example

Given V = R and ‖v‖ = |v|, consider the sequence
{(

1
2

)n}∞
n=1

.
Is the sequence convergent to v̄ = 0.

Example

Consider the sequence {(−1)n}∞n=1
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Convergence

In most engineering applications, we are interested in the convergence of
an iterative algorithm.

In general, we do not know where!

The given definition of the convergence requires the limiting element
v̄ ∈ V , an element we may not know, to verify convergence.

There are ways to exclude “v̄ − dependence”.
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Cauchy sequence

Definition

Let (V, F, ‖.‖) be a normed space. A sequence {vn}∞n=1 in V is said to be
a Cauchy sequence if ∀ε > 0, ∃N(depending on ε) such that
‖vn − vm‖ < ε for all n,m > N .

Remark:

Every convergent sequence is a Cauchy sequence. The converse, in
general, is not true.

Example

Consider the normed space (Q,Q, |.|), (i.e., set of rational numbers over
the field rational numbers with norm being the absolute value). Is the
sequence

{
1 +

∑n
i=1

1
i!

}∞
n=1

convergent?
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Banach Space

Definition

A normed space is said to be complete if every Cauchy sequence is
convergent. A complete normed space is called a Banach Space.

Example

”‘A normed space that is not complete”’
Let V = {f |f : [−1, 1]→ R, f is continuous and

∫ 1
−1 |f(t)|dt <∞}.

Define ‖f‖1 :=
∫ 1
−1 |f(t)|dt.

Now consider the sequence {fn}∞n=1 defined as follows:
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Inner Product Space

An inner product space is a linear space with an additional structure called
inner product.

Definition

Let V be a linear space over field F . An inner product is a map of the
form 〈·, ·〉 : V × V → F that satisfies the following three axioms for all
vectors x, , y, z ∈ V and all scalars α ∈ F .

1) 〈x, y〉 = 〈y, x〉 (conjugate symmetry)

2a) 〈αx, y〉 = α 〈x, y〉 (linearity in the first argument)
2b) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (linearity in the first argument)

3) 〈x, x〉 ≥ 0 with equality only for x = 0 (positive defineteness)
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Inner Product Space

Notice that

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

〈x, αy〉 = α 〈x, y〉
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Inner Product Space

Example

V = Cn, 〈x, y〉 =
∑n

i=1 xiyi

Example
. . .

Theorem

Cauchy-Schwarz inequality:

| 〈x, y〉 |2 ≤ 〈x, x〉 〈y, y〉

E. Özkan EE 501 Linear Systems Theory November 5, 2018 41 / 49



Inner Product Space

Example

V = Cn, 〈x, y〉 =
∑n

i=1 xiyi

Example
. . .

Theorem

Cauchy-Schwarz inequality:

| 〈x, y〉 |2 ≤ 〈x, x〉 〈y, y〉
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Summary

We have studied

Sets

Linear Spaces

Normed Linear Spaces

Inner Product Spaces

Sets

Very general concept. We can perform:

Define subsets

Take unions, intersections, complements, set subtraction
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Summary

Linear Spaces

We defined members of our sets as vectors and defined

Vector addition

Scalar multiplication

We obtained an algebraic structure, where we can

perform algebraic operations

,

define linear combinations

,

define span, basis, etc. Find representation of vectors wrt to basis

,

define linear transformations between vector spaces

.
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Summary

Normed Linear Spaces

We defined norms to incorporate a geometric structure on top of the
algebraic structure. We can calculate the distance between two members
of the vector space: ‖x− y‖ In a normed space we can,

Define (measure) distance

Analyse convergence of sequences

Normed spaces have a major shortcoming. The direction cannot be
characterized. The direction, or rather relative direction, can be studied
by the help of a tool we call the inner product.

E. Özkan EE 501 Linear Systems Theory November 5, 2018 44 / 49



Summary

Normed Linear Spaces

We defined norms to incorporate a geometric structure on top of the
algebraic structure. We can calculate the distance between two members
of the vector space: ‖x− y‖ In a normed space we can,

Define (measure) distance

Analyse convergence of sequences

Normed spaces have a major shortcoming. The direction cannot be
characterized. The direction, or rather relative direction, can be studied
by the help of a tool we call the inner product.
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Summary

Inner Product Spaces

Enhancement of the geometric structure of a normed space

Example

Let u an v be two unit vectors in Rn

〈u, v〉 = 0 if they are orthogonal

〈u, v〉 is maximum when u and v point in the same direction

〈u, v〉 is minimum when u and v point in the opposite direction
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E. Özkan EE 501 Linear Systems Theory November 5, 2018 45 / 49



Linear Transformation

Definition

Let V and W be linear spaces over the same field F . A linear
transformation T is a mapping T : V →W satisfying
T (a1x1+a2x2) = a1T (x1)+a2T (x2) ∀a1, a2 ∈ F and ∀x1, x2 ∈ V

Example

V = W polynomials of degree less than n in S; T = d
ds

V = W ={continuous functions of type f : [0, 1]→ R};
Tf =

∫ 1
0 f(s)ds
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E. Özkan EE 501 Linear Systems Theory November 5, 2018 46 / 49



Range and Null Spaces

Definition

Given linear transformation T : V →W , the null space of T is the set of
all x ∈ V satisfying Tx = 0w. That is,
N (T ) := {x ∈ V : Tx = 0}

Definition

Given linear transformation T : V →W , the range space of T the set of
all w ∈W satisfying Tv = W . That is
R(T ) := {w ∈W : w = Tv for some v ∈ V }
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Range and Null Spaces

Remark

For a linear transformation T : V →W , N (T ) is a linear subspace of V.

Remark

R(T ) is a subspace of W .
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E. Özkan EE 501 Linear Systems Theory November 5, 2018 48 / 49



Linear Transformation

Definition

A function f : X → Y is one-to-one if x1 6= x2 ⇒ f(x1) 6= f(x2)

Theorem

Let T : V →W be a linear transformation. Then mapping T is one-to-one
if and only if N (T ) = {0}.
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if and only if N (T ) = {0}.
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