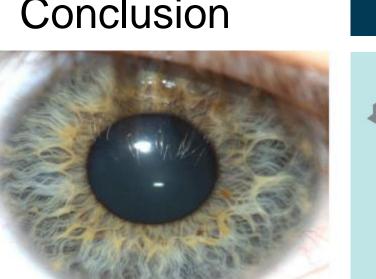


Machine Learning Techniques For Medical Diagnosis Of Diabetes Using Iris Images

MMI 700: Research Methods

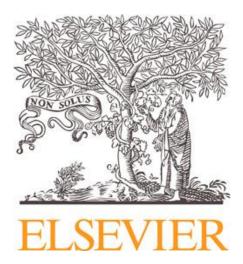
Ümit Mert Çağlar


Lecturer: Assoc. Prof. Hüseyin Hacıhabiboğlu

Graduate School of Informatics, METU

Introduction

- Introduction
- Abstract
- Discussion
- Results
- Conclusion

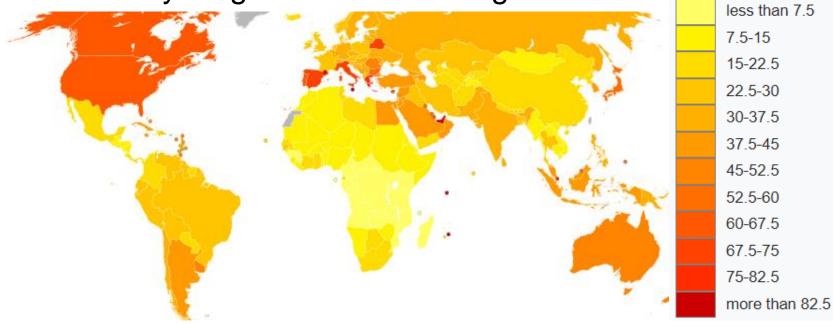


Introduction

Machine learning techniques for medical diagnosis of diabetes using iris images

Iris Diabetes Classification Segmentation Feature extraction Disease diagnosis

Thapar University, Patiala, India Accepted 10 January 2018


Piyush Samant, Ravinder Agarwal

- **Circular Hough transform** used for segmentation,
- **Daugman's rubber sheet model** used for normalization,
- Gabor filter and 2-D DWT based features

https://www.sciencedirect.com/science/article/ pii/S0169260717304649

Introduction

- Diabetes:
 - 381.8 million people are affected
 - excessive blood sugar level
 - late diagnosis leads to advert effects
 - early diagnosis is a challenge

Prevalence of diabetes worldwide (per 1000 inhabitants).

Abstract

- Diabetes is about pancreatic enzyme Insulin
- Complementary-Alternative Medicine (CAM)
- Digital image processing
- Best classification accuracy 89.63% RF classifier
- Effective and diagnostically significant model for noninvasive and automatic diabetes diagnosis.

Classification

Identifying to which category an object belongs to.

 Applications: Spam detection, Image recognition.

 Algorithms: SVM, nearest neighbors, random forest, ...

 — Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms**: SVR, ridge regression, Lasso,

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, ... — Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, non-

Model selection

Comparing, validating and choosing parameters and models.

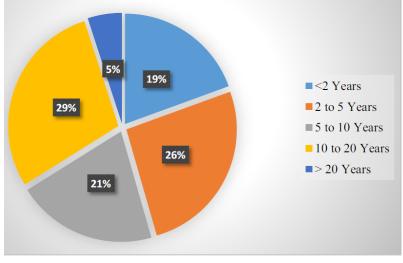
Goal: Improved accuracy via parameter tuning **Modules**: grid search, cross validation,

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. **Modules**: preprocessing, feature extraction.

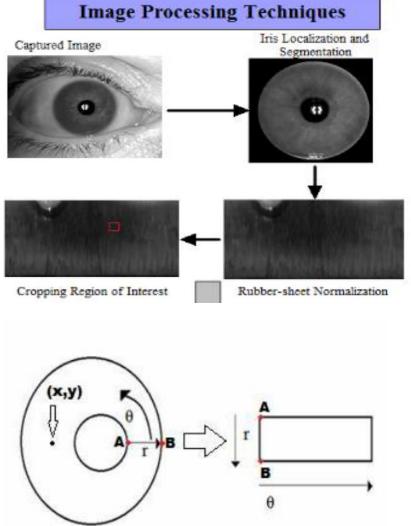
Discussion



Subject Selection and Data Collection

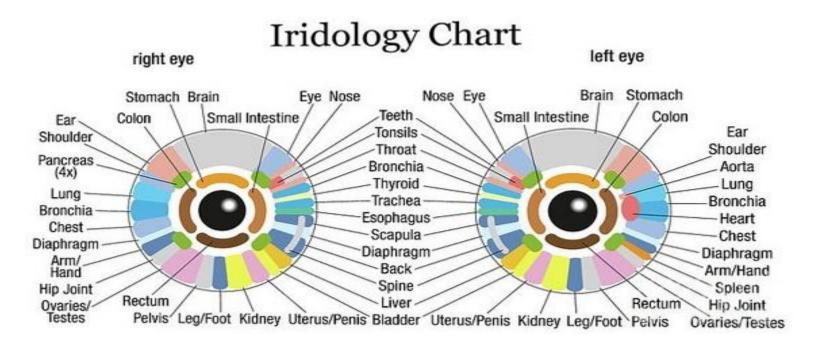
- Non-contact IR imaging
- Varied diabetic states of 1-25 years

Distribution of subjects according to duration of diabetic stste

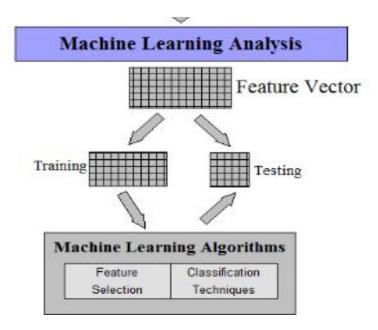


	No. of male	No. of female	Gender ratio	Average age	Standard deviation	Total
Diabetic subjects	102	78	1.307	53.32	8.56	180
Healthy subjects	91	67	1.35	52.86	9.98	158

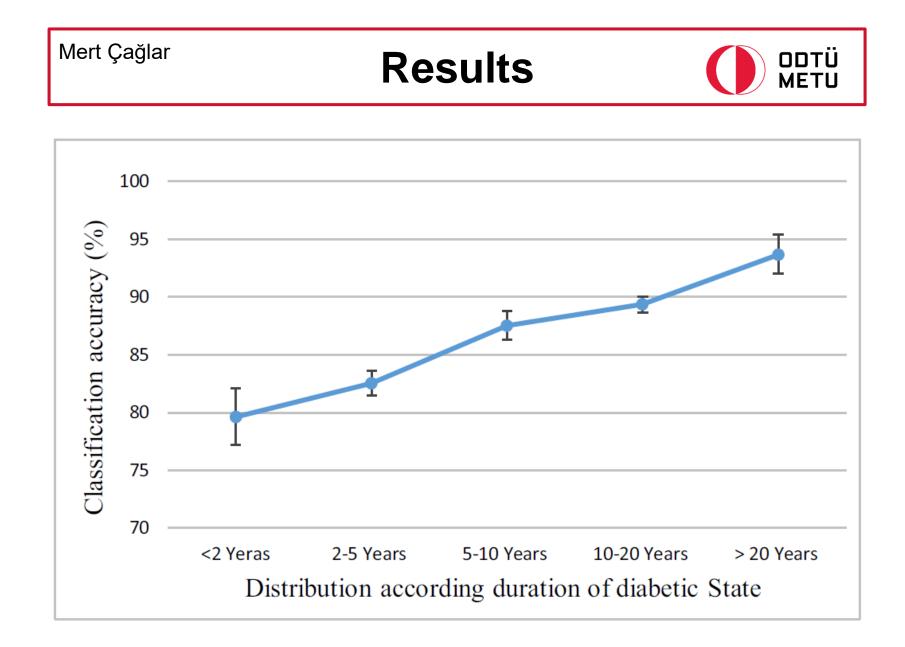
Discussion


- Input: Gray IR images
 640 ×480 (VGA) of each
 iris
- Iris segmentation (Circular Hough transform)
- Rubber-sheet normalization
- Output: Homogeneous 2D array of 360 ×720

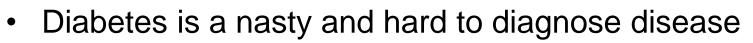
Discussion


- The Region of Interest (ROI) cropped from the rubber sheet normalized iris.
- Green areas in the chart indicate pancreas (source of Insulin enzyme which balances blood sugar)

Mert Çağlar	Discuss	
Textural features	Formulas	Feature Extraction
Contrast	$\sum_{i,j} i-j ^2 P(i,j)$	Statistical Features
Correlation	$\sum_{i,j}(i-\mu_i)(j-\mu_j)P(i,j$	Texture Based Features Wavelet Based Features
Energy	$\sum_{i,j} P(i, j)^2$	Discrete Wavelet Transforms (DWT
Homogeneity	$\sum_{i,j} \frac{\mathbf{P}(i,j)}{1+ i-j }$	
Statistical features		Formulas
Mean intensity		$\frac{1}{N}\sum_{i=1}^{N}X(i)$
Standard deviation		$\left(\frac{1}{(N-1)}\sum_{i=1}^{N}(X(i)-\bar{X})^2\right)^{1/2}$
Entropy Histogram intensity fe	eatures	$\sum_{i=1}^{N_1} P(i) . \log_2 P(i)$ Five histogram intensity levels


Results

- Binary Tree Model (BT),
- Support Vector Machine (SVM)
- Adaptive Boosting Model (AB)
- Generalized Linear Models (GL)
- Neural Network Model (NN)
- Random Forest (RF)
 Classifiers have been trained using the repeated 10 fold cross
 validation technique.


Feature selection method	Formula for relevance index or scoring criteria Specification		
Fisher score	$J_{fisher}(X_{k}) = \frac{\sum_{m=1}^{2} n_{m} (\mu_{k,m} - \mu_{k})^{2}}{\sum_{m=1}^{2} n_{m} \sigma_{k,m}^{2}}$	X_k =feature to be evaluated, μ_k =overall mean of feature to be evaluated, m=no of samples in mth class, $\mu_{k,m}$ =mean of (X_k) on mth class and $\sigma_{k,m}^2$ =variance of (X_k) on mth class.	
<i>t</i> -test	$J_{ttest}(X_k) = \frac{\mu_1 - \mu_2}{\sqrt{\frac{\sigma_1^2}{n_1} - \frac{\sigma_2^2}{n_2}}}$	μ_1 and μ_2 =means of two classes σ_1 and σ_2 =variance of two classes	
Chi-square test	$J_{chi-square}(X_k) = \sum_{i=1}^r \sum_{m=1}^2 \frac{(n_{im}-\mu_{im})^2}{\mu_{im}}$ where, $\mu_{im} = \frac{n_{*m}n_{i*}}{N}$	n_{im} =no of samples with ith feature value in mth class, n_{i^*} =no of samples with ith feature value n_{*m} = no of samples in class m and N no of samples	

Questions & Conclusion

ορτΰ

METU

- Digital image processing and machine learning algorithms can create complementary-alternative medical possibilities
- Introduce similar methods to commonly available smartphones/selfie industry
- Identify other diseases from iridology chart and DSP ML methods
- Improve the results with worldwide data collection
- What do you think about the topic?

Mert Çağlar