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INTRODUCTION

» Purpose: Aviation industry generates big data, we want to transform this
data into knowledge, thus improve the safety, security, and efficiency of
aviation,

» The modern aircraft has evolved to become an important part of our
society. Its design is multidisciplinary .... Machine learning has,
historically, played a significant role in aircraft design, primarily by
approximating expensive physics-based numerical simulations.

» ...a major portion of the current efforts are generally built from scratch
assuming a zero prior knowledge state, only relying on data from the
ongoing target problem of interest.



FACTS

» Aircraft design is an extremely
complex task that involves the
interactions of a variety of mutually
interdependent systems.

» Despite advancements, aircraft
design remains extremely laborious
and time consuming, taking as much
as 6 years from the initial conception
to the first product delivery




Al IN AIRCRAFT DESIGN

» Generally, aircraft design requires the involvement of groups of specialists and
sound mathematical formulations (or architectures) to manage the disciplinary
interdependencies.

» In all variants of multidisciplinary design optimization (MDO) architectures, a
critical component is the engineering analyses. In the past, these tasks were
performed manually using (often oversimplified) analytical theory and/or labor
Intensive physical experimentation

» With the advent of high-performance computing and the advancements of
computational engineering methods, modern analyses heavily utilize physics-
based numerical simulations, where mathematical models of physical systems
are solved for a discretized domain. However, the significant improvements to
accuracy, particularly for large-scale complex systems, come at a price.
Computational fluid dynamics (CFD) simulations, for example, can take
anywhere from several minutes to several weeks per simulation



MODELLING AND SIMULATION

Data in USA cross-country commercial flights

Sensor data from a cross-country flight

» Pratt & Whitney’s Geared Turbo Fan (GTF)
engine comes with 5000 sensors that generate up
to 10 GB of data per second 0TB* 2 X 6 %28,537% 365

information per Boeing 737 country flight from  flights in the skyin

engine every hour New YorktoLos the United States on
Angeles any givenday.

=2,499,841,200 TB

» In aircraft design, machine learning is
predominantly used for approximating the

=T o ‘ — expensive physics-based simulations using
' Fuelflow,fuelpressure supervised regression models, or more
Qlipressure, emperature and
quantity commonly, surrogate models.
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AIM

» Aim is to unveil metamachine learning
as a promising approach to enhance
the efficiency of aircraft design and

facilitate the realization of a more (:
agile design process "754
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» Rapid adaptation to change, lower o

development costs, and shortertime- -
to-market. ' .




AIRCRAFT DESIGN INSIGHTS

» Data-driven surrogate models of physical phenomena

» Machine-learning complemented physics simulations. Computational fluid
dynamics(CFD) » :

» Regression Models used:

» Polynomial regression (the 2" order variant in particular)

» Neural networks

Gaussian process (or kriging)
Co-kriging ,

Support vector regression
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Radial basis functions.




TRANSFER LEARNING

—l Project A

» The development of complex designs
draws heavily from prior knowledge

» While prior knowledge incorporation
can occur through appropriate
problem formulations, the optimization Find Optimal
algorithm itself is conducted from
scratch i.e. without reusing knowledge
(e.g. data or regression models)
gathered from previous optimization
efforts.

Generic Surrogate-Assisted Generic Surrogate-Assisted
Optimization Algorithm Optimization Algorithm




CASE STUDY
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The previous study is carried out with 5 input parameters, while the current one has 6 parameters!



CASE STUDY

TABLE 1 List of the input and output parameters for the previous and current study datasets for UC1 and UC2.
For similarly labeled parameters, the subsystem where it affects is indicated inside the parenthesis.

INPUT PARAMETERS OUTPUT PARAMETERS

UC1 CURRENT UC1 PREVIOUS UC2 PREVIOUS AND UCT & UC2 PREVIOUS AND
STUDY STUDY CURRENT STUDIES CURRENT STUDIES

ALTITUDE-FT ALTITUDE-FT ALTITUDE-FT O1: NET THRUST

FAN BYPASS RATIO FAN BYPASS RATIO - O2: FNET/W
PRESSURE RATIO (COMPRESSOR) PRESSURE RATIO (COMPRESSOR) PRESSURE RATIO (COMPRESSOR) O3: FUEL FLOW
PRESSURE RATIO (BURNER) PRESSURE RATIO (BURNER) PRESSURE RATIO (BURNER) 04: TSFC
EFFICIENCY (TURBINE) EFFICIENCY (TURBINE) EFFICIENCY (TURBINE) O5: CORE AIRFLOW
A8/A2 (NOZILE) - A8/A2 (NOZLLE) O6: WEIGHT

The previous study is carried out with 5 input parameters, while the current one has 6 parameters!



CASE STUDY

» 300 engine configurations are simulated for the source (previous study) dataset, and 500
configurations are sampled for the target (current study of interest) dataset

» Gaussian process regression (GP)

» Naive-Transfer Gaussian process regression (NT-GP)

» Each dataset is sampled using a latin hypercube design of experiment (DOE) procedure
and rescaled to a mean of zero and a standard deviation of one.



CASE STUDY
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Output FIGURE 6 RMSE for each output with increasing number of simula-
tions for training a GP model. The red segments show the RMSE of

NT-GP trained with 20 (target) simulations, and the red stars high-
light the points where GP starts outperforming NT-GP.

FIGURE 5 RMSE values of GP and NT-GP for each output on UC1.




CASE STUDY-2

Gaussian process regression (GP)
Naive-Transfer Gaussian process regression (NT-GP)
Adaptive Transfer Gaussian Process (AT-GP)

Metaheuristic-based Instance Selection for Transfer (MIST)
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Il negative transfer may occur if the naive combination of those datasets results in adulterated
samples from the source distribution that misleads the GP.
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FIGURE 8 Percentage of source data employed (dark colored) for training an NT-GP model with
MIST for each output in UC2.




CASE STUDY-2
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FIGURE 9 RMSE for GP, NT-GP, AT-GP, and MIST-GP for each output
in UC2 of the real-world data. The numbers within the figure window

FIGURE 7 RMSE values of GP. NT-GP. AT-GP and MIST-GP. for each represent the actual values of the yellow bars that extend outside
output on UC2. the figure.
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