Duration: 15min

- Write your NAME, SURNAME, ID and SECTION.
- Upload your solutions to Gradescope as a SINGLE JPG or SINGLE PDF PAGE.

Let R be the region bounded by the cone $z^{2}=x^{2}+y^{2}$ and the paraboloid $z=x^{2}+y^{2}$ in the first octant. Express $\iiint_{R} x y d V$ as an iterated triple integral in cylindrical coordinates.
Cylindied coordmetes
$x=r \cos \theta \quad z=z \quad$ insert these into $\quad x y=r \cos \theta r \sin \theta=r^{2} \sin \theta \cos \theta$ $y=r \sin \theta$
Volume element $\quad V V=r d r d \theta d z$ ($O R$ in some other order)

Intersection

$$
\begin{gathered}
z^{2}=x^{2}+y^{2}=z \quad \Rightarrow z^{2}=z \Rightarrow z(z-1)=0 \\
z=1
\end{gathered}
$$

$1=z=x^{2}+y^{2} \quad$ Projection to $x y$ plane

$$
\text { below " " } z=x^{2}+y^{2} \Rightarrow z=x^{2}+y^{2}=r^{2}
$$

$$
\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \int_{r^{2}}^{r}\left(r^{2} \sin \theta \cos \theta\right) r d z d r d \theta
$$

