MATH 120 2020-2 Quiz 4

Duration $\sim 20 \mathrm{~min}$.

- Write your NAME, SURNAME, ID and SECTION.
- Write the QUESTION completely on your solution paper.
- Upload your solutions to Gradescope as a SINGLE PAGE.

Question

Let $f(x, y)=x y+e^{2 x+3 y}$.

1. Approximate $f(0.1,-0.1)$
2. Determine the minimum rate of change of $f(x, y)$ at the point $(0,0)$.

Answer

1. Linearization of $f(x, y)$ at (a, b) :

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

It is known that $f(x, y) \approx L(x, y)$, so in order to approximate $f(0.1,-0.1)$ we will use the linearization at $(0,0)$. First, we should evaluate first order derivatives;

- $f_{x}(x, y)=y+2 e^{2 x+3 y}$ so $f_{x}(0,0)=0+2 e^{0}=2$
- $f_{y}(x, y)=x+3 e^{2 x+3 y}$ so $f_{y}(0,0)=0+3 e^{0}=3$

We have

$$
L(x, y)=f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y=1+2 x+3 y
$$

Therefore $f(0.1,-0.1) \approx L(0.1,-0.1)=1+0.2-0.3=0.9$
2. Let f be differentiable function then for an unit vector u

$$
D_{u} f=\nabla f \cdot u=|\nabla f||u| \cos \theta=|\nabla f| \cos \theta
$$

where θ is the angle between ∇f and u. The minimum rate of change occurs when $\theta=\pi$.
Observe that $f_{x}(x, y)=y+2 e^{2 x+3 y}$ and $f_{y}(x, y)=x+3 e^{2 x+3 y}$ are continuous in a neighborhood of $(0,0)$ which implies $f(x, y)$ is differentiable at $(0,0)$.
Thus the minimum rate of change of f at $(0,0)$ is

$$
-|\nabla f(0,0)|=-\left|\left\langle f_{x}(0,0), f_{y}(0,0)\right\rangle\right|=-|\langle 2,3\rangle|=-\sqrt{4+9}=-\sqrt{13}
$$

