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Outline

- Digital image representations

+ Object and pattern detection

- 3D geometry and perspective correction
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Image Representations

- Adigital image is an array of numbers.
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Color Spaces

Alternative color spaces can be preferred in different
applications:

» YCDbCr color space: Describe images in terms of luminance
and chrominance components
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- Often used in image and video
compression applications
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Color Spaces

- HSV color space: Describe images in terms of hue, saturation,
and value
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+  Separates color information from intensity

= More robust to illumination changes than RGB in color-based
detection
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Outline

- Digital image representations

- 3D geometry and perspective correction
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Object Detection

+ Object detection: Search for what characterizes your

guery object in the image

+ Search this in your image: ’

[pixabay.com]

Color-based detection: “Look for a red object”
- Shape-based detection: “Look for a sphere”

Color & Shape -based detection: “Look for a red sphere”
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Color-Based Detection

»+ Color-based detection characterizes the query
object in terms of its color.

- Athreshold is applied.

- Example: To look for a red object

R>200

[pixabay.com]

R>200 & G<100 & B<100

-60° < Hue <60
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Limitations of Color-Based Detection

+ Color-based detection is easy to implement.
However, it has serious limitations!

- Uncontrolled background Is easily confused with the object

- Appropriate value of the threshold depends a lot on the
illumination conditions

- Detection algorithm is quite vulnerable to illumination change,
noise, shadows, ...
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Color-Based Detection Example

- Problem: Detect the red frame surrounding the gadget

Under direct sunlight

Detection with
R>200, B<180, G<180

Detection with
R>200, B<180, G<180

10

.
- Detection result
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Shape-Based Detection

Problem: Look for a generic shape (rectangle, circle) in
your image

- A basic contour-based shape detection algorithm:

Find the contours in the image

Simplify the contours by reducing points

[ | B . e LI | . e s
'/ \.// ..’ \\ ‘.:1-.(__: g
~ "N .’);.-

[wikipedia.org]

Determine shape based on contour information:
3 vertices: Triangle

- 4 vertices: Rectangle
Many vertices + extra conditions: Circle
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Shape-Based Detection

+ Open-CV implementation of the contour-based

shape detection algorithm is available:
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An Overview of Object Detection Techniques

- Color-based detection: Not robust to imaging conditions

- Shape-based detection: More reliable if you look for a simple
shape

- Techniques for objects with more complex shapes:
- Template matching
- Feature matching
- Customized detectors

- Deep networks
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Object Detection with Template Matching

- Template matching:

- Convolve (correlate) the query pattern with the searched image

Query pattern
Searched image

Inspect the maximum value of the convolution

.
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Object Detection with Template Matching

Query pattern:

- Advantages:
More reliable than color-based detection

Easy to implement (FF T-based implementations, Phase
Correlation method)

Limitations:
Geometric transformations (scale changes, rotations) lead to
errors
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Feature-Based Object Detection

- Features: Points of interest in an image that can be

repeatably detected

- Corner points, blob-like regions, ring-shaped regions ...
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Feature Detection Algorithms

- Harris corner detector: Looks for corner-like points -
where image gradients are high in both directions A
[Harris, 1988]

- SIFT (Scale-Invariant Feature Transform): Looks for
ring-like structures [Lowe, 2004] .

———

i

- Several improvements in more recent feature detectors:
Faster operation, transformation-invariance,...

- SURF, FAST, ORSB, ...
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Feature Descriptors

-+ A descriptor vector is assigned to each feature point.

- Describes the structure of the image around the feature

- Example: A common descriptor is Histogram-of-Gradients
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[Lowe, 2004] Histograms of
gradient directions
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Feature Matching

- Each feature is assigned a descriptor vector

Searched image

.1 Query pattern
]

]

- Comparing the descriptor vectors, the match of
each query feature is found in the searched image.
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Feature Matching

- Wrong matches are eliminated with algorithms like RANSAC
[Fischler 1981].

- From the matched features, the query pattern is detected in
the searched image.

+ The location of the sought object can be estimated.
; ofosrf

[www.mathworks.com]

* Open-source implementations are available
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Customized Detectors

It may be possible to devise your own detector
based on the properties of the object you look for.

- Searched pattern: Develop an object
—> detector based on edge
detection

- Searched pattern: Develop an object
I detector based on corner
detection

Examples: QR code scanners, barcode scanners, ...

Bonus: The pattern may allow the inference of extra
information (orientation, distance, etc.)
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Deep learning methods

Object detection based on deep networks: Active research topic

Classical structure of a Convolutional Neural Network (CNN):

fc_3 fc_4

Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution | K—M
(5 X 5) ke".‘el Max-Pooling (5 X 5) kerr_\el Max-Pooling = (With
valid padding (2x2) valid padding (2x2) dropout)
' B —— S O ¢
INPUT n1 channels n1 channels n2 channels n2 channels || & ' 9
(28 x 28 x 1) (24 x 24 x n1) (12x12 xnl) (8x8xn2) (4x4xn2) OUTPUT
[towardsdatascience.com] n3 units

- Training the network = Learning the filter coefficients in each layer

Number of parameters to learn is proportional to:
Filter size * Number of channels * Number of layers

22

EE 493, METU 2022



Deep learning methods

Convolutional Neural Networks (CNN): AlexNet [2012],

VGG [2014], ResNet [2016], ...
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Deep learning methods

- Networks specialized for the object detection problem: R-

YOLO OUtpUt [pjreddie.com]

- Recent adaptations to embedded platforms: Tiny-YOLO,
MobileNet, ...

»  Smaller model size
>~ Faster operation
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Deep learning methods

- Advantages:

- Very high performance
State of the art

Solution:

Disadvantages: Complex models
- Take a pre-trained network
- Fine-tune final layers to adapt

the network to your application

°' '.erydeeparchltectures may be slow to run on
embedded systems

Need time to train ;
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Outline

- Digital image representations

+ Object and pattern detection
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3D Geometry and Perspective Correction

- Problem: When capturing a scene, how to relate observed
2D pixel coordinates to actual 3D coordinates?

Pixel coordinates
(X,y)

3D coordinates
(X,Y,Z2)="
‘e

..
..
L]

Pixel distance

N\
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Relation Between 3D - 2D Coordinates

Pinhgle camera model:

k|
/ Principal axis
C ' > Z
Principal point
Camera center

Image plane

+ Derive the 2D coordinates of the image of a 3D point:

[ &, Y,2)
Y The 3D point (X, Y, Z) Is
% mapped to the 2D point
& > X Y
C T 7 (f§»f§>
Image plane
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Pinhole Camera Model

3D point 2D projection Pixel coordinates

XY.2) = (1505 ) = (£ +pe £ 40))

Relation between 3D point and 2D point

iX+zpe ] [F 0 e 0|5

oz ] oo 1 oo]f]

_ i _ [ x
Homogeneous i ;0 pz 0 Y
coordinates: by | =10/ py O 7
' k] Lo o 1 0] ]

L | — - -

X K X
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Pinhole Camera Model

- The camera frame is not necessarily aligned with the

Z

world frame v
Camera Z
frame >< X l/ y
World

> X
R, { frame
Pinhole camera model
x = |[K|0|X e x = K|R|t|]X
Under rotation and | !
translation " L X ]

Y

X — [RIE]X || ’

- - 1
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s 3D Reconstruction Possible?

Pinhole camera model

X — K[R\t]X We cannot recover X from x in
|\ general. = >
 kr | 3x4 matrix X
ky Not invertible! | vV
) Z
- 1 ?.,..v

Camera center

Good news: We can recover X when we know that it is on
a planar surface! # -
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Model Under Planar Scene

- Planar scene assumption: Let us take Z=0

Pixel coordinates:

orld frame coordinates:

Y 0)
/'> ’t
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Z=0
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kx f 0 pg r11 Ti2 [ri3] tg v
ky | = 0 f Py o1 T2 [T23| Uy 0
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- hi1 hia his | | X R
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Homographies

x = HX
- ¥ N
x X
o 3 x 3 X
k 1

- This relation is called a homography.

H is a 3x3 invertible matrix.

- The 3D point X can be recovered

from its pixel coordinates!

—} How to correct the perspective distortion for planar points:

1. Compute the homography matrix from a set of known 3D
points on a plane and their pixel coordinates

2. Find the matrix H-?

3. Given x in pixel coordinates, find the 3D point as X = H-1 x
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Computing the Homography

Pixel coordinates

World frame coordinate

i kx ] I h11 h12 h13

(X1,Y1,0)
01. 1 . Ey | = | hor haoa  has
o o ° -k | h31  h3z  |hs33

 Taking /33=1 for normalization, the relation xi= H X gives

ot + i 4 s -~ ha1 X+ hooYy + hog
" ha Xt haVi+ 1, T hai Xy + hgV + 1

~ <

* N such 2D-3D point matches gives 2N equations in unknowns

{h11,h12,h13,...,h3a}
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Computing the Homography

Form a linear equation system and solve for the
unknown homography parameters {h11, h12, h13, ..., h3o}

- Warning: Too large pixel coordinates may cause
numerical instability!

Normalize the coordinates to 0-mean and an average norm
of sqrt(2)

Compute the homography parameters

Undo the normalization
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Perspective Correction

Camera moves

» C=0 )

Reference point Reference point

- Let the angle between the camera frame and the plane be fixed:

- Then even if the camera moves, through H-' we can get the
relative coordinates (X, Y’, 0) with respect to the camera.
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Conclusions

+ Object detection

- Shape priors
- Template matching, feature detection

- Deep learning: Needs data and time
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Conclusions

+ Perspective correction problem:

Pixel coordinates
N AN
3D coordinates
(X,Y,Z2)="?

Y

Easy to do if the scene is planar and camera looks at
the scene from a constant angle (%=

A 4

- Learn a homography model!
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