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points of the line in the usual way. To each point is assigned a real
number; the numerical difference between two coordinates is taken to
be the distance between those two points, and also the length of the
interval of which they are the end points. It is clear, for example, that
the measure of all of the points between zero and one— the measure of
the interval [0,1]—is equal to one. Since the set of all rational num-
bers is denumerable, the measure of all of the points in that interval
with rational coordinates is zero. The measure of all of the irrational
points between zero and one is, therefore, by subtraction, one. This
set, of course, is not an interval, nor is it the union of any finite or
denumerable set of intervals. It is doubtful that we could properly
refer to the ‘‘length’ of any such set; nevertheless, it does have a well-
defined measure. We see that this concept of measure is, indeed, a
generalization of the concept of length. However, not all sets of points
on the line have measures; for reasons we need not go into, some sets
are not measurable, and they receive no measure at all (which is not to
say that their measure is zero, for zero is a very definite measure).

It is important to emphasize the fact that measure theory does
not represent merely an extension of ordinary arithmetical addition
(including the summation of infinite series) to the addition of non-
denumerable sets of terms. In elementary arithmetic, if we are given a
set of terms, say 2, 3, 5, it has the unique sum 10. Given the same set
of terms again, the sum must be the same once more. In ordinary
addition, even the order of the terms does not matter, but in dealing
with infinite series the order of the terms may make a difference.*
However, given the same infinite set of terms in the same order, the
sum must always be the same. For example, our series
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has the unique sum 1, and the infinite series
0+0+0+ ...

has the unique sum 0.

Measures do not behave in the same way. As Cantor showed,
any line segment of any length with its end points removed has pre-
cisely the same number of points as any other, and the infinite
straight line also has the same number ¢. Moreover, the points com-
posing any such open interval or entire line have precisely the same
internal ordering amongst themselves. This can be shown by a simple
diagrammatic argument (see Figure 5). Given two line segments AB
and CD of unequal length, we may place the shorter above the longer
and connect the end points of AB and CD with lines that intersect at
point P. Using P as a point of projection, we can connect any point in
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the open interval (AB) to a point in the open interval (CD) by a line
through P, and we can similarly connect any point in (CD) to a point
in (AB). This shows that there must be the same number of points in
(AB) and (CD), for we have just shown how to establish a one-to-one
correspondence between the members of the two sets of points. By
breaking the segment AB, we can show by similar reasoning that the
open interval (AB) has the same number of points as the infinite line.
Moreover, this correspondence between the points on the two lines is
order-preserving; that is, if two points a and b in (AB) correspond
respectively to two points ¢ and d of (CD), then if a is to the left of b
we will find c to the left of d. The existence of such an order-preserving
one-to-one correspondence is the defining characteristic of sameness of
order; two sets that have the same order in this precisely defined
sense are said to be isomorphic to one another. Thus, we see that
every open interval, finite or infinite, is isomorphic to every other.

It is an immediate consequence of these facts that the measure
of an interval is not uniquely determined by the number of points it
contains and the order in which they occur. Hence, if we assign each
point measure zero, and attempt to ‘“‘sum’’ them in the order in which
they occur, we find that a given set of terms in a given order does not
determine a unique ‘“‘sum.” The measure of a set of points depends
upon more than the size (measure) of each of the points and the order
in which they occur.

We have just seen that point sets containing c¢ elements could
have any finite length (measure) greater than zero, or infinite length.
We have also seen that any set of points with a finite or denumerably
infinite number of members must have zero length (measure). To
prevent the tempting misconception that the measure of a set of
points is greater than zero if and only if it has cardinality c, let us
consider Cantor’s ingenious discontinuum; it contains c¢ points, but
has measure zero. We begin with a line segment, say the set of points
between zero and one, end points included. We remove the middle



