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𝑘𝐵𝑇
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𝑛=1
 .       Eşitlik 1 

Hemen üstteki Eşitlik 1 ile (**) yazımızdaki Eşitlik 1’in paydasının benzerliğine dikkat etmekte yarar 

var. Ne ki, toplamın sınırlı değil sınırsız ∞ olması, sınırlı sayıdaki özdeksel (maddi) parçacıklar için değil 

de sınırsız sayıdaki fotonlar için yazılmış olmasıdır. 

Daha açık ifadelerle; bu yazıdaki Eşitlik 1’de 

𝑛 değeri, bazı özel alt kriterlerce belirlenmiş fotonların oluşturduğu mikro durumları (‘microstate’) 

belirleyen indistir (indis=sayı); 

𝑘𝐵 eskisi gibi, Boltzmann sabitidir; 

𝐸𝑛 değeri de ilgili mikro durumun toplam enerjisidir. 

Minik not: 
1

𝑘𝐵𝑇
 değeri çoğu zaman Boltzmann faktörü olarak tanımlanır ve  harfi ile gösterilir. 

Böylelikle Eşitlik 1 sadeleşmiş olur; 

𝑍 = ∑ exp⁡(−𝐸𝑛)
∞

𝑛=1
 .        Eşitlik 2 

Demek ki, herhangi bir fotonun 𝐸𝑛 enerjisine sahip olma olasılığı 𝑝(𝑛) şöylece bulunabilir 

𝑝(𝑛) =
exp⁡(−𝐸𝑛)

∑ exp⁡(−𝐸𝑛)
∞

𝑛=1

=
exp⁡(−𝐸𝑛)

𝑍
 .       Eşitlik 3 

Dikkatli okuyucu bu yazıda Eşitlik 1’den beri enerjinin paketçikli (‘quantized’) olarak alındığını fark 

etmiş olmalıdır. Şimdi bir adım daha gidip, fotonun frekansı  ile enerjisini bağdaştıralım; 

𝐸 = ℎ .          Eşitlik 4 

Eşitlik 4’deki ℎ harfi Planck sabitini simgelemektedir ve paketçiklenmiş enerjiler için  

𝐸𝑛 = 𝑛ℎ           Eşitlik 5 

yazılabilir. 

Bütün bunlardan sonra, sistemdeki tüm fotonlardan sadece  frekansına sahip olanların ortalama 

enerjisi < 𝐸 > şöylece hesaplanabilir: 

< 𝐸 >=
∑ (𝑛ℎ)⁡exp⁡(−𝑛ℎ)

∞
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         Eşitlik 5 

ki, bu da (**) yazımızdaki Eşitlik 2 ile ışıma yeğinliği olarak tanımlanmış değere eşittir. Oradaki ışıma 

yeğinliğine yani Planck’ın karacisim ışıma formülüne giden yol şu basit gözlemden geçer; buradaki 

Eşitlik 5’in payındaki yani kesir çizgisinin üst tarafındaki ifade paydanın yani kesir çizgisinin altındaki 

ifadenin yaninin yanisi, az yukarıda Eşitlik 1 ile tanımlanmış 𝑍 ifadesinin ’ya göre alınmış türevidir. 

Demek ki,  

< 𝐸 >=

𝜕𝑍

𝜕

𝑍
=⁡

𝜕𝐿𝑛(𝑍)

𝜕
         Eşitlik 6 

olarak yalınlaştırılabilir. Eşitlik 6’da 𝐿𝑛 simgesi (𝑒 tabanına göre alınan) doğal logaritmayı temsil 

etmektedir. 



Eh, elimizde şu an bir nal var ve işimiz üç nalla bir ata kalmış demektir. Yani, Eşitlik 1’deki 𝑍’yi 

hesaplayabildikten sonra işin sonuna hayli yaklaşmış olabiliriz. 

Eşitlik 2’den anımsayalım ki, 

𝑍 = ∑ exp⁡(−𝐸𝑛)
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   Eşitlik 7 

şeklinde yazılabilir. 

A_aaa! O da ne!? Doğru mu görmekteyiz? 
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     Eşitlik 8 

Eşitlik 8 tamı tamına ve de tıpa tıp Zenovari bölünmeler formülü! Böyle değil mi? 

Bir de gözlerimizi ovuşturup bakalım bakalım; 
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𝑒ℎ
)2 + (
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)3 +⋯     Eşitlik 9 

Eşitlik 9’u yalınlaştırmak amacıyla değişken değiştirelim ve diyelim ki, 

𝑟 =
1

𝑒ℎ
          Eşitlik 10 

olsun. Böyle olunca, 𝑍 de şöyle olur; 

𝑍 = 𝑟 + 𝑟2 + 𝑟3 +⋯         Eşitlik 11 

𝑍 = 𝑟(1 + 𝑟 + 𝑟2 + 𝑟3 +⋯)        Eşitlik 12 

𝑍 = 𝑟(1 + 𝑍)          Eşitlik 13 

ve nihayet 

𝑍 =
𝑟

1−r
=

1

𝑒ℎ

1−
1

𝑒ℎ

=
1

𝑒ℎ−1
         Eşitlik 14 

 


