4. (15 Points) If G is a group and X a finite symmetric generating set of G, the growth function of G with respect to X is the function $f_{(G,X)} : \mathbb{N} \to \mathbb{N}$ defined by

$$f_{(G,X)}(n) = |\{g \in G \mid |g|_X \le n\}|$$

Let G be a group and X a finite symmetric generating set of G. Show that G is infinite if and only if $f_{(G,X)}$ is monotone increasing.

(
$$\Leftarrow$$
) If $f(G,x)$ is monotone increasing,
 $\forall n \ge 1 \exists g \in G \quad s.t \quad |g_n|_X = n$.
So, $\exists g_i|i \ge i]$ is an infinite subset of G.
(\Rightarrow) $[gt = B(n) = \exists g \in G] \quad |g|_X \le n \le so that \quad f_{G,X}(n) = |B(n)|$
 $B(o) \subseteq B(n) \subseteq \dots \dots B(n) \subseteq B(n+i) \subseteq \dots \dots \text{ with } G = \bigcup B(n)$.
 $B(o) \subseteq B(n) \subseteq \dots \dots B(n) \subseteq B(n+i) \subseteq \dots \dots \text{ with } G = \bigcup B(n)$.
 $h = 0$
 $B(n) = B(n+i) \forall i=1,2,\dots$
 $\Rightarrow \quad G = \bigcup B(n) \Rightarrow \quad G \text{ is finite.}$
 $f(G,x) (n) = f_{G(x)}(n+i) \quad \forall i=1,2,\dots$
 $\Rightarrow \quad G = \bigcup B(n) \Rightarrow (n+i) \forall i=1,2,\dots$
 $\Rightarrow \quad G = \bigcup B(n) \Rightarrow (n+i) \forall i=1,2,\dots$
 $a_{n=0} \quad (n+i)$

Math 466 - Spring 2025 - Finaş - June 12 - 17:00 - Instructor: Gökhan Benli FULL NAME (write in CAPITAL letters) SIGNATURE STUDENT ΙD 56 QUESTIONS ON 4 PAGES TOTAL 100 POINTS 120 MINUTES **1.** (20 Points) Let G be a group and $X \subseteq G$. (a) Let $\langle X \rangle = \bigcap_{X \subseteq H \le G} H$. Show that $\langle X \rangle = \left\{ g \in G \mid g = x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k}, x_i \in X, n_i \in \mathbb{Z}, k \in \mathbb{N} \right\}$ Clearly eck. if $\alpha = x_1^{n_1} \cdots x_k^{n_k}$, $b = y_1^{n_1} \cdots y_t^{n_t} \in K$ ($m_1 \in \mathbb{Z}$, $m_1 \in \mathbb{Z}$) (E)Claim K&G. $ab^{-1} = x_1^{w_1} \cdots x_k^{w_k} y_t^{-m_1} \cdots y_2^{-m_2} y_1^{m_1} \in K$ Also, clearly XEK. So, (X) EK-(2) let H ≤ G with X ⊆ H. Then, since H is a subgp, K ∈ H Thus K = () H = <x> XC HSG (b) Let $\langle \langle X \rangle \rangle = \bigcap_{X \subseteq H \leq G} H$. Show that $\langle \langle X \rangle \rangle = \langle X^G \rangle$ where $X^G = \{g^{-1}xg \mid x \in X, g \in G\}$. = K Clearly $X \subseteq X^{6} \subseteq K$. Claim: K&G. let KEK, g E G. By part (a), $k = (g_1 | x_1 g_1)^n \cdots (g_t | x_t g_t)^n$ for some $n_i \in \mathbb{Z}$ $g_i \in G, x_i \in X$. $= \left(g_1^{-1} \times_1^{n_1} g_1 \right) \cdot \cdots \left(g_t^{-1} \times_t^{n_t} g_t \right)$ Then $g^{-1}kg = ((g_{1}g)^{1} \times (g_{1}g)^{1} \cdots ((g_{2}g)^{1} \times (g_{2}g)^{1} \in K.$ So KeG. This (XX) = K. let H&G with X ⊆ H. Then, sin a H is rormal, X⁶ ⊆ H. and hence $k = \langle x^6 \rangle \leq H$.

M E T U Department of Mathematics

Thus K⊆ «×>>.

2. (30 pts) (a) Let
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $\vec{u} = (1, 1)$. Describe the isometry $f = T_{\vec{u}} \cdot A$.
 $A = \begin{bmatrix} \cos \frac{\pi}{2} & \sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} & -\cos \frac{\pi}{2} \end{bmatrix}$ So A is reflection wrt $y = x$.
(if $l: y = x$
 $\vec{u} \neq l \Rightarrow$ f is a glicle reflection.
 $(I - A) \vec{u} = 0$. So, f first reflects wrt $y = x$ and
from translates by \vec{u} .

(b) Describe the isometry given by the matrix $B = \begin{bmatrix} 2/3 & 1/3 & 2/3 \\ -2/3 & 2/3 & 1/3 \\ -1/3 & -2/3 & 2/3 \end{bmatrix} \in SO(3).$ $+r(B) = 2 = 2\cos\alpha + 1 \implies B \text{ is rotation by } \alpha = \frac{\pi}{3}$ $I - B = \begin{bmatrix} 1/3 & -1/3 & -2/3 \\ 2/3 & 1/3 & -1/3 \\ 1/3 & 2/3 & 1/3 \end{bmatrix} \xrightarrow{R3} \begin{bmatrix} 1 & -1 & -2 \\ 2 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{R} \begin{bmatrix} 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ So, Null $(I - B) = \langle (1, -1, 1) \rangle = \ell$ So, B is rotation about the line ℓ by $\frac{\pi}{3}$. **3.** (20 Points) Let $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ be an orthonormal basis of \mathbb{R}^3 and let A be the matrix formed by taking \vec{v}_1 as first column, \vec{v}_2 as second column, and \vec{v}_3 as third column. Also let

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

(a) Show that ABA^{-1} represents reflection with respect to the plane containing \vec{v}_1 and \vec{v}_2 , and that $-ABA^{-1}$ represents rotation by π about the axis determined by \vec{v}_3 .

Note that A is on attragonal matrix so
$$A = A^{T}$$
. $\Delta tr(Ho(C) = -\frac{1}{2} \sqrt{1} \sqrt{1} = A^{T} \sqrt{1} = \begin{bmatrix} v_{1}, v_{1} \\ v_{2}, v_{1} \\ v_{3}, v_{1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \overline{A}^{T} \sqrt{2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \overline{A}^{T} \sqrt{3} = A^{T} \sqrt{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
So $(ABA^{T})(v_{1}) = AB\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = A \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} = v_{1}$ $(ABA^{T})(v_{3}) = AB\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = A \cdot \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = v_{3}$
So ABA^{T} is o vertication $wvt < \langle v_{1}, v_{2} \rangle$.
Let $C = -ABA^{T}$, $\Delta e^{T}(C) = 1$.
 $C(v_{3}) = v_{3}$ So C is rotation obset $\langle v_{3}^{T} \rangle$.
 $+v(C) = -\frac{1}{V}(ABA^{T}) = -\frac{1}{V}CB$ $\Rightarrow C$ is rot by $TT wvt < \langle v_{3}^{T} \rangle$.

(b) Find the matrix which represents reflection with respect to the plane $x + \sqrt{3}y = z$.

let
$$\vec{v_1} = (\frac{r_3}{2}, -\frac{1}{2}, 0)$$
 $\{\vec{v_1}, \vec{v_2}\}$ is an orthonormal books for the
 $\vec{v_2} = (\frac{1}{2r_5}, \frac{r_5}{2r_5}, \frac{2}{r_5})$
 $\vec{v_3} = (\frac{1}{r_5}, \frac{r_5}{r_5}, -\frac{1}{r_5})$
 $\vec{v_3} = (\frac{1}{r_5}, \frac{r_5}{r_5}, -\frac{1}{r_5})$
(Pick any unit vector $\vec{v_1}$ on the plane and then find a unit vector $\vec{v_3}$ in
 $\vec{v_2}$ on the plane \perp to $\vec{v_1}$. Then pick a unit vector $\vec{v_3}$ in
 $\langle \vec{v_1}, \vec{v_2} \rangle = (\frac{r_5}{r_5}, \frac{1}{r_5}, \frac{r_5}{r_5})$
By (9), if $A = \begin{bmatrix} r_{5/2}, \frac{1}{2r_5}, \frac{r_5}{r_5}, \frac{r_5}{r_5} \\ -\frac{r_{1/2}}{r_5}, \frac{r_{3/2}}{r_5}, \frac{r_{5/2}}{r_5} \end{bmatrix}$ fuer
 ABA^{-1} is the veflection with $\langle \vec{v_1}, \vec{v_2} \rangle$.