
4. (15 Points) If G is a group and X a finite symmetric generating set of G, the growth
function of G with respect to X is the function f(G,X) : N → N defined by

f(G,X)(n) = |{g ↑ G | |g|X ↓ n}|
Let G be a group and X a finite symmetric generating set of G. Show that G is infinite if and
only if f(G,X) is monotone increasing.

5. (15 Points) Show that Z↔D→ ↗= ↘a, b, c, | c2, (cb)2, aba↑1b↑1, aca↑1c↑1≃
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1. (20 Points) Let G be a group and X ⇐ G.

(a) Let ↘X≃ =
⋂

X↓H↔G

H. Show that ↘X≃ =
{
g ↑ G | g = xn1

1 xn2
2 · · · xnk

k
, xi ↑ X,ni ↑ Z, k ↑ N

}

(b) Let ↘↘X≃≃ =
⋂

X↓H↭G

H. Show that ↘↘X≃≃ = ↘XG≃ where XG =
{
g↑1xg | x ↑ X, g ↑ G

}
.
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2. (30 pts) (a) Let A =

[
0 1
1 0

]
and ωu = (1, 1). Describe the isometry f = Tωu · A.

(b) Describe the isometry given by the matrix B =




2/3 1/3 2/3
⇒2/3 2/3 1/3
⇒1/3 ⇒2/3 2/3



 ↑ SO(3).
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3. (20 Points) Let {ωv1,ωv2,ωv3} be an orthonormal basisof R3 and let A be the matrix formed
by taking ωv1 as first column, ωv2 as second column, and ωv3 as third column. Also let

B =




1 0 0
0 1 0
0 0 ⇒1





(a) Show that ABA↑1 represents reflection with respect to the plane containing ωv1 and ωv2, and
that ⇒ABA↑1 represents rotation by ε about the axis determined by ωv3.

(b) Find the matrix which represents reflection with respect to the plane x+
⇑
3y = z.
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