4. (15 Points) Suppose a group G acts on a finite set X. Show that if $g, h \in G$ are conjugate, then g and h fix the same number of elements of X, i.e., |Fix(g)| = |Fix(h)|.

Suppose
$$g = \bar{k}hk$$
 for some $k \in G$.
 $x \in Fix(g) \Leftrightarrow g.x=x \Leftrightarrow \bar{k}hh.x=x \Leftrightarrow h(k.x)=kx \Leftrightarrow kx \in Fix(h)$
So define $Q: Fix(g) \longrightarrow Fix(h)$
 $x \xrightarrow{1 \longrightarrow k.x}$
 $k.x=k.y \implies x=y \implies Q$ is inj.
if $y \in Fix(h)$, $\bar{k}'y \in Fix(g)$ and $Q(\bar{k}'y) = y \Rightarrow Q$ is surj.

5. (15 Points) Using the classification of finite subgroups of SO(3), show that A_5 has no subgroups of order 30. (Hint: A_5 has no element of order 15).

let
$$H \leq A_{S}$$
 with $|H| = 30$
so $H \leq so(3)$ of order 30.
 $\Rightarrow H \cong \mathbb{Z}_{30}$ or $H = D_{15}$
 $But = Both$ have elements of order 15.
As does not have elements of order 15.
As does not have elements of order 15:
 $A_{5} = e$, 20 3-cycles, $2u - scycles$, 15 elts
order 3 corder 3 corder 5 form (ab) (cd)
 $order 3$.

Math 466 - Spring 2025 - Midterm 2 - May 16 - 17:40 - Instructor: Gökhan Benli		
FULL NAME (write in CAPITAL letters)	STUDENT ID	SIGNATURE
6 QUESTIONS ON 4 PAGES	120 MINUTES	TOTAL 100 POINTS

Department of Mathematics METU

1. (20 Points) Let $C \subseteq \mathbb{R}^3$ be the cube whose vertices are at $(\mp 1, \mp 1, \mp 1)$ and let $G \leq SO(3)$ be the group of rotations of C. Also, let $L = \{\ell_1, \ell_2, \ell_3\}$ be the x, y, z axes respectively. Clearly G acts on L. Hence we have a homomorphism $\varphi: G \to S_3$.

(a) Show that φ is surjective.

(b) Show that the kernel of φ has 4 elements and is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

 $|6| = 24 \quad \text{and} \quad (|2(6)| = 6 \quad s_{2} \quad |K_{0} \cdot || = 4.$ let r_{x}, r_{y}, r_{z} be rotations by $\tau \tau$ about each axes. Clearly, $r_{x}, r_{y}, r_{z} \in K_{0}(4) \text{ and } r_{x}^{2} = r_{y}^{2} = r_{z}^{2} = e.$ So Ker P ~ Z2 D Z2

2. (20 pts) Let $A, B \in SO(3)$ be two rotation matrices with axes ℓ_A, ℓ_B and angles α_A, α_B respectively. Show that AB = BA if and only if $(\ell_A = \ell_B)$ or $(\ell_A \perp \ell_B \text{ and } \alpha_A = \alpha_B = \pi)$.

$$(\Rightarrow) \text{ Suppose } AB = BA.$$

$$let \quad A\vec{\nabla} = \vec{V}, \quad \vec{V} \neq \vec{\partial}$$

$$Then \quad A(B\vec{v}) = B(A\vec{v}) = B\vec{v} \quad \Rightarrow B\vec{v} / |\vec{v} \Rightarrow B\vec{v} = \mp \vec{V}$$

$$if \quad B\vec{v} = \vec{v} \quad \Rightarrow \quad lA = lB$$

$$if \quad B\vec{v} = -\vec{v} \quad \Rightarrow \quad lB = \langle \vec{v} \rangle^{\perp} \quad \text{and} \quad \forall B = \pi$$

$$(\Rightarrow lA \perp lB)$$

$$(\Leftarrow) \quad \text{(lear if } l_{A} = l_{B}.$$

$$\text{if } l_{A} \perp l_{B} \quad \text{end} \quad \propto_{A} = \kappa_{B} = \pi$$

$$(e_{A} \perp l_{B} \quad \text{end} \quad \propto_{A} = \kappa_{B} = \pi$$

$$(e_{A} \perp l_{B} \quad \text{end} \quad \alpha_{A} = \kappa_{B} = \pi$$

$$(AB) \quad (\hat{w}) = A \quad (-\hat{w}) = -A \quad \hat{w} = -\hat{w}$$

$$(AB) \quad (\hat{w}) = B \quad (\hat{w}) = -\hat{w}$$

$$(AB) \quad (\hat{v}) = B \quad (-\hat{v}) = -\hat{v}$$

$$(AB) \quad (\hat{v}) = B \quad (-\hat{v}) = -\hat{v}$$

$$(AB) \quad (\hat{w}) = A \quad (-\hat{w}) = \hat{w}$$

$$(AB) \quad (\hat{w}) = B \quad (-\hat{w}) = \hat{w}$$

$$(AB) \quad (\hat{w}) = B \quad (-\hat{w}) = \hat{w}$$

3. (15+15=30 Points) (a) Let $A \in SO(3)$ be a rotation matrix. Show that the rotation angle α of A satisfies $1 + 2\cos(\alpha) = tr(A)$. (Here, tr(A) is the trace of A, you may use the fact that conjugate matrices have the same trace without a proof.)

(b) Let
$$A, B \in SO(3)$$
. Show that A and B are conjugate if and only if $tr(A) = tr(B)$.
(\Rightarrow) Suppose $tr(A) = tr(B) \Rightarrow \forall A = \forall B$
let l_A, l_B be the axes of rotations.
let $C \in SO(3)$ be a rotation s. $t \quad C(l_A) = l_B$
($C \in a$ rotation about l_C)
Claim: $C \wedge \overline{C}' = B$
if $l_B = \langle \overline{m} \rangle$, $(C \wedge \overline{C})(\overline{n}) = CA(\overline{C}^{\dagger}\overline{n}) = C(\overline{C}^{\dagger}\overline{n}) = \overline{n}$
So B and $CA\overline{C}'$ have some axis of rotation.
Also $\forall_B = d_A = a'_{A\overline{C}}$ hence B and $CA\overline{C}'$ have some
 $agle of rot. \Rightarrow B = CA\overline{C}^{\dagger}$.