
Math 466 Exercises for Week 10

May 4, 2025

- 1. Suppose a group G acts on a set X. If $g \cdot x = y$, show that $gStab_G(x)g^{-1} = Stab_G(y)$.
- 2. Let G be a group and consider the action of G onto itself given by $g \cdot h = gh$ for every $g, h \in G$. Show that the homomorphism $\phi : G \to Sym(G) \ g \mapsto f_g$ where $f_g(h) = g \cdot h \ \forall h \in G$, is injective. Conclude that if |G| = n, then G is isomorphic to a subgroup of S_n .
- 3. (a) a) Using the Orbit-Stabilizer Theorem, show that the symmetry group of a regular *n*-gon in \mathbb{R}^2 has 2n elements. (Think of the action on the sides of the *n*-gon.)
 - (b) Using the Orbit-Stabilizer Theorem, show that the symmetry group of a cube in \mathbb{R}^3 has 48 elements. (Think of the action on the faces of the cube).
- 4. Suppose we want count the number of different colorings of the sides of a regular n-gon with n different colors (up to rotation). For example the following colorings of the regular pentagon are the same:

Think of \mathbb{Z}_n acting on the set of all colorings by rotations. Using Burnside's Theorem about the number of orbits of an action, find the number of all possible colorings of a regular *n*-gon up to rotation.