5. (15 Points) Let $f \in Isom(\mathbb{R}^2)$ be a non-trivial rotation about a point \vec{p} and $g \in Isom(\mathbb{R}^2)$ be a non-trivial rotation about a point \vec{q} . Show that fg = gf if and only if $\vec{p} = \vec{q}$.

Clearly, if
$$\vec{p} = \vec{q}$$
 then $fg = gf$.
Suppose $fg = gf$.
Then $(fg)(\vec{q}) = f(g(\vec{q})) = f(\vec{q})$
 $= \int (gf)(\vec{q}) = g(f(\vec{q})) \xrightarrow{f(\vec{q})} f(\vec{q})$ is fixed by g
 $\Rightarrow f(\vec{q}) = \vec{q}$
 $\Rightarrow \vec{q} = \vec{P}$.

6. (15 Points) Describe finite subgroups of $Isom(\mathbb{R})$.

Recall
$$|som(R) = T \times \langle s \rangle$$

where $T = \{T_x | x \in R\}$ $s(x) = -x \quad \forall x$.
If $G \leq |som(R)|$ is finite
then G has no non-trivial toronslations.
If $T_x \cdot s$, $T_y \cdot s \in G$ then
 $T_x \cdot s \cdot T_y \cdot s \in G$ then
 $T_x \cdot s \cdot T_y \cdot s = T_{x-y} \in S \implies x = y$.
So, $G = \{e\}$ or $G = \{e, T_x \cdot s\} \cong \mathbb{Z}_{L}$
for some $x \in R$.

Math 466 - Spring 2025 - Midterm 1 - April 14 - 14:40 - Instructor: Gökhan BenliFULLNAME (write in CAPITAL letters)STUDENT IDSIGNATUREEMMY NOETHER100 MINUTESTOTAL 100 POINTS

M E T U Department of Mathematics

1. (20 Points) let D_n be the dihedral group of order 2n. Show that the center of D_n is trivial if n is odd and contains two elements if n is even. (If G is a group, its *center* is $Z(G) = \{g \in G \mid gh = hg \text{ for all } h \in G\}$)

Decall
$$Dn = \{r^{i}s^{i} \mid i \in \{0, ..., n-1\}, j \in \{0, 1\}\}$$

where $v(x) = x+1$ $\forall x \in \mathbb{R}$.
 $s(x) = x \quad \forall x \in \mathbb{R}$.
Node that $sr = \overline{r}'s \neq rs \quad since \ r \neq r^{-1}(n \geqslant 3!)$
So r and s are not in $\exists CDn$) if $n \geqslant 3$.
Also if $r's \in Dn$ with $i \in \{1, ..., n-1\}$
 $(r^{i}s) \cdot r = r(r^{i}s) \iff v^{i-1} = r^{i+1} \iff r \neq r^{-1}$
So, $r^{i}s \notin \overline{z}(Dn)$ with $i \in \{1, ..., n-1\}$ for $n \geqslant 3$.
For $i \in \{1, ..., n-1\}$, $r^{i}s = sr^{1} \iff r^{2}r^{i} = e$
 $\iff n \lfloor 2i', 2i \nmid \{2, ..., 2n-2\}$
So if $n is odd$ $r^{i} \notin \overline{z}(Dn) \forall i = 1, ..., n-1$
 if $n is$ even, $(r^{i}s) \cdot r^{n/2} = v^{i}r^{n/2}s = r^{n/2}(r^{i}s)$
So $r^{n/2} \in \overline{z}(Dn)$. Thus $\overline{z}(Dn) = \{e, r^{n/2}\}$

2. (30 pts) In each of the following cases, describe the given element of $Isom(\mathbb{R}^2)$. (i.e., state whether it is a translation, rotation, reflection or glide reflection and give necessary information such as rotation center, reflection line etc.)

(a)
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{2} \end{bmatrix}$$

 $by \frac{\pi}{2}$.

(b)
$$f = T_{\vec{u}} \cdot A$$
 where $\vec{u} = (1, 2)$.
 $(\mathbf{I} - A) \vec{p} = \vec{u} \quad \longleftrightarrow \quad \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Leftrightarrow \begin{array}{c} p_1 + p_2 = 1 \\ -p_1 + p_2 = 2 \\ \Leftrightarrow \quad \vec{p} = \begin{bmatrix} -h_2 \\ 3/2 \end{bmatrix}$

f is rot. about \vec{p} by $\frac{T}{2}$.

$$(c) B = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} \cos -\frac{\pi}{2} & \sin(-\frac{\pi}{2}) \\ \sin(-\frac{\pi}{2}) & \cos(-\frac{\pi}{2}) \end{bmatrix} \rightarrow \text{reflection wrt}$$

$$y = \text{ten} \left(-\frac{\pi}{4}\right) \times$$

$$i < y = -\times$$

(d)
$$g = T_{\vec{v}} \cdot B$$
 where $\vec{v} = (1, 1)$
B in reflection with $l: y = -x$ and $\vec{v} \perp l$.
So g is a reflection.
need $\vec{p} = s.t$ $\vec{p} \in e^{\perp}$ and $(\mathbf{I} - B)\vec{p} = \vec{v}$
($\vec{P} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $p_1 = p_2 \iff \vec{P} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$
So, g is reflection with $T_{\vec{p}}(e) : y = -x + 1$

3. (10 Points) Let $T_{\vec{v}}$ and $T_{\vec{w}}$ be two translations in $Isom(\mathbb{R}^2)$. Show that they are conjugate if and only if $||\vec{v}|| = ||\vec{w}||$.

Let
$$g = T_{\overline{u}} \cdot A$$
 $g T_{\overline{v}} \cdot g^{\dagger} = T_{\overline{w}}$
 $\iff T_{\overline{u}} \cdot A \cdot T_{\overline{v}} \cdot \overline{A} \cdot T_{\overline{v}} = T_{\overline{w}}$
 $\iff T_{\overline{u}} \cdot A \cdot T_{\overline{v}} \cdot \overline{A} \cdot T_{\overline{v}} = T_{\overline{w}}$
 $\iff T_{\overline{u}} + A \overline{v} = T_{\overline{w}} + \overline{u}$
 $\iff T_{\overline{v}} + A \overline{v} = \overline{w} + \overline{u}$
 $\iff A \overline{v} = \overline{w}$
 30 , if $T_{\overline{w}}$ and $T_{\overline{w}}$ are conjugate then $A \overline{v} = \overline{w} = 1 |\overline{v}|| = ||\overline{w}||$.
Convecely, if $||\overline{v}|| = ||\overline{v}||$ let $A \in O(2)$ be the rotation
 $Convecely$, if $||\overline{v}|| = ||\overline{v}||$ let $A \in O(2)$ be the rotation
 $S \cdot + A \overline{v} = \overline{v}$. Nona $A \cdot T_{\overline{v}} \cdot A^{-1} = T_{A\overline{w}} = T_{\overline{w}}$.

4. (10 Points) Let K and H be groups. Show that if $\varphi : K \to Aut(H)$ is a non-trivial group homomorphism, then $H \rtimes_{\varphi} K$ is a non-abelian group.

let kek st $\mathcal{V}(k) \neq \mathrm{id}_{\mathcal{H}}$. So, $\exists \mathrm{he} \mathrm{H}$ with $\mathcal{V}(k)(\mathrm{h}) \neq \mathrm{h}$. Then $(1,k)(\mathrm{h},1) = (\mathcal{V}(k)\mathrm{h},k) \neq (\mathrm{h},k) = (\mathrm{h},1)(\mathrm{k},1).$ So, $\mathrm{H} \mathrm{Xe} \mathrm{K} \mathrm{is}$ non-abelian.