
5. (15 Points) Let f → Isom(R2) be a non-trivial rotation about a point ωp and g → Isom(R2)
be a non-trivial rotation about a point ωq. Show that fg = gf if and only if ωp = ωq.

6. (15 Points) Describe finite subgroups of Isom(R).
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1. (20 Points) let Dn be the dihedral group of order 2n. Show that the center of Dn

is trivial if n is odd and contains two elements if n is even. (If G is a group, its center is
Z(G) = {g → G | gh = hg for all h → G})
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2. (30 pts) In each of the following cases, describe the given element of Isom(R2). (i.e., state
whether it is a translation, rotation, reflection or glide reflection and give necessary information
such as rotation center, reflection line etc.)

(a) A =

[
0 ↑1
1 0

]

(b) f = Tωu · A where ωu = (1, 2).

(c) B =

[
0 ↑1
↑1 0

]

(d) g = Tωv · B where ωv = (1, 1)
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3. (10 Points) Let Tωv and Tωw be two translations in Isom(R2). Show that they are conjugate
if and only if ||ωv|| = ||ωw||.

4. (10 Points) Let K and H be groups. Show that if ε : K ↓ Aut(H) is a non-trivial group
homomorphism, then H ⊋ε K is a non-abelian group.
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