

MULTIMEDIA INFORMATICS

SYLLABUS

Year, Semester: Course Conduct:	2023-2024 Fall Face-to-face in class Wednesday@13:40 Lecture videos on YouTube & Lecture notes on ODTUClass
	Students are expected to watch the lecture videos and study the course material before attending the weekly face-to-face sessions.
	There will be regular quizzes from the content and attendance is expected in these sessions.
Lecturer:	Prof. Dr. Alptekin Temizel, <u>atemizel@metu.edu.tr</u>
Teaching Assistant:	Ayberk Aydın, <u>aayberk@metu.edu.tr</u>

Course Objective

The course covers several aspects of designing reliable and scalable machine learning systems for real-world deployment. It deals with development of production quality models and introduces the machine learning pipeline, concepts on machine learning system design and data engineering. It provides know-how on model development, and how to scale up the training for large models as well as evaluation, calibration and debugging of these models. Generation of reproducible models via experiment tracking tools and model versioning is also covered. Hardware platforms and frameworks for deployment are introduced, followed by basic deployment concepts, containerized deployment and testing.

Reference Material:

CS 329S: Machine Learning Systems Design - https://stanford-cs329s.github.io/

Reading Material:

Rules of Machine Learning: Best Practices for ML Engineering <u>https://developers.google.com/machine-learning/guides/rules-of-ml</u>

Challenges in Deploying Machine Learning: a Survey of Case Studies <u>https://arxiv.org/pdf/2011.09926.pdf</u>

Grade Distribution:

Assignments	45%
Final project	30%
5x Quizzes	25%

Deliverables

Documents and necessary files of the assignments must be uploaded to ODTUClass by students before the specified due dates.

University Policies

All students are **expected to obey** the university code of integrity and avoid academic dishonesty or plagiarism.

No	Date	
1	4 Oct	Introduction to the Course and Machine Learning Life-Cycle
		Designing a Machine Learning System – I
2	11 Oct	Main Requirements of Machine Learning Systems
		Reliability, scalability, maintainability, adaptability
		ML in research vs. in production
		Traditional software vs. ML software, ML Production Myths
		Designing a Machine Learning System - II
_		Batch vs. online, Edge vs. cloud computing, Offline vs. Online Learning
3		Iterative Development
		Phases of ML Adoption
	25 Oct	Versioning and Experiment Tracking
4		Experiment tracking tools
		Data versioning
		ML pipeline versioning
		Continuous integration/continuous delivery for ML
5	1 Nov	Hands-on Lab
		Experiment tracking
		Data Engineering
6		Data Engineering
	9 Nov	Data centric approach
o	8 Nov	Data basics and data formats Creating training datasets, labelling
		Semi-supervised and self-supervised learning
		Hands-on Lab
7	15 Nov	
7	13 100	Containerization
		Data Engineering-II
8	22 Nov	Sampling, Class imbalance problems
		Data Augmentation
		Data Leakage
		Data Analysis with FiftyOne
	29 Nov	Model Development and Training
		Model Selection
9		AutoML, Neural Architecture Search
		Optimizers
		Model Calibration
	6 Dec	Case Study – Deep Learning Solutions for Retail Stores
10		Invited speaker from industry
		Dr. Cihan Öngün, Senior Deep Learning Engineeer, Signatrix GmbH
		Case Study – Autonomous Driving
11	13 Dec	Invited speaker from industry
		Dr. Berker Loğoğlu, Head of Computer Vision, Machine Learning and Robotics at Kuartis Technology
		and Consulting
		Model Optimization for Deployment
		Model compression
12		Quantization
		Pruning
		Knowledge distillation
		Deployment Platforms and Frameworks
	27 Dec	GPUs, TPUs, IoT devices and TinyML
13		Packaging
		TensorRT, Triton inference server
		Google Cloud Platform (GCP), Amazon Web Services (AWS)
	3 Jan	Evaluation
		Debugging, System evaluation and testing
14		Data testing, profiling and visualization
		Benchmarking
1		Perturbation evaluation, ablation study

There'll also be extra content during face-to-face classes to cover recent developments in the field and go through some case studies such as:

- Case Study: Data Labelling
- Labelling Errors in Public Datasets
- Explainable AI
- Case Study: 150 successful machine learning models:6 lessons learned at Booking.com
- Why ML Projects Fail?
- Foundation Models
- Prompt Engineering
- Data Analysis with FiftyOne
- Hyper Parameter Tuning
- How To Train Your ViT
- Model Optimization Case Study: BERT
- Model Sparsification
- NVIDIA NCCL
- Distributed Training
- Working with Large Models
- PyTorch Performance Tuning
- Paper: Efficiency Misnomer
- MLPerf Inference Benchmark
- DeepChecks