

MULTIMEDIA INFORMATICS

MMI 727– Deep Learning: Methods and Applications

SYLLABUS

Year, Semester: Course Conduct:	2023-2024 Fall Face-to-face Lectures II-05 Tuesday@13:40 Lecture videos on YouTube & Lecture notes on ODTUClass Lab sessions on Google Colab
	Students are expected to watch the lecture videos and study the course material before attending the weekly synchronous sessions.
	There will be quizzes from the content and attendance is expected.
Lecturer: Teaching Assistant:	Prof. Dr. Alptekin Temizel, <u>atemizel@metu.edu.tr</u> Ayberk Aydın, <u>aayberk@metu.edu.tr</u>

Course Objective

This course aims to give background knowledge on several topics related to deep learning and provide a laboratory environment for practical applications. Backpropagation, convolutional neural networks, recurrent networks, Long Short-term memory (LSTM), generative adversarial networks, attention and transformers are some of the core topics that will be covered through the lectures. The course aims to balance theory and practice in that it will involve students implementing various algorithms, testing those algorithms under several domains and accessing GPU clouds during laboratory sessions to code the program examples using PyTorch.

Textbook:

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

Reference Material:

CS231n: Convolutional Neural Networks for Visual Recognition - <u>http://cs231n.stanford.edu/</u> Deep Learning Resources - <u>https://deeplearning4j.org/deeplearningpapers</u>

Reading Material:

How Smart Machines Think. MIT Press. Sean Gerrish, Kevin Scott. The Cambridge Handbook of Artificial Intelligence, Keith Frankish, William M. Ramsey.

Attendance and Absences

Grade Distribution:

Lab reports and 3x Assignments	50%
Final project	25%
5x Quizzes	25%

Deliverables

Documents and necessary files of the assignments must be uploaded to ODTUClass by students before the specified due dates.

Late Submissions

Late submissions are accepted with a penalty of 10% grade decrease for each day delayed.

University Policies

All students are **expected to obey** the university code of integrity and avoid academic dishonesty or plagiarism.

No	Date	
1	3 October	Introduction to the Course and Fundamentals of Deep Learning
2		Introduction to Machine Learning
	10 October	Introduction to Machine Learning
		Introduction to Neural Networks
		Deep Learning Basics and Architecture
3	17 October	Introduction to Deep Learning
		History of Deep Learning and Convolutional Networks
		Deep Learning Ecosystem
		Linear Machines
		Feature Learning, Trainable Features, Hierarchical Feature Representation, Invariant Features
4	24 October	Lab Session – I
		Deep Learning environment, setups and hardware
		Cloud systems and Colab environment Creating a neural network from scratch
		Hands-on MNIST handwritten digit recognition example (PyTorch/Keras)
		Convolutional Neural Networks-I
5		Convolutional Network Model
	31 October	Convolution and Pooling Operations, Activation Functions
		Convolutional Neural Networks-II
		Object Recognition/Image Classification
6	7 November	AlexNet, Data Augmentation, Dropout
Ŭ		Inception Module, Resnets
		Network Design Guidelines
		Convolutional Neural Networks-III
_	14 November	Object Detection, R-CNN, Fast/Faster R-CNN, YOLO
7		Internal Covariate Shift, Batch Normalization
		Initialization Issues, Xavier Initialization
8	21 November	Lab Session -II
	28 November	Learning with Memory - I
		Time-delay Neural Network (TDNN)
9		Recurrent Neural Networks (RNN)
		Character-Level Language Model
		Image Captioning, Attention
	5 December	Learning with Memory – II
10		Natural Language Processing, Word2Vec
10		Shortcomings of RNNs, Long-Short Term Memory (LSTM)
		Self-Attention and Transformers
	12 December	Generative Models
		PixelRNN/CNN
11		Variational Autoencoders
		Generative Adversarial Networks Diffusion Models
<u> </u>		Optimization for Deep Learning
	19 December	Gradient Descent
12		Momentum and Nesterov accelerated gradient
		Gradient descent variants, Adagrad, Adadelta, RMSProp, Adam
	26 December	Applications
13		Image Segmentation
		Low-cost/mobile Networks
	2 January	Deployment and Network Optimization
14		Model Pruning and Quantization Aware Training
		Deployment Platforms
		Tools for Deployment and Network Optimization

There'll also be extra content during face-to-face classes to cover recent developments in the field and go through some case studies such as:

- Deep Neural Nets: 33 years ago and 33 years from now (Andrej Karpathy), Implementation and Comparison of original LeNet mode
- Closer look at ResNet and Inception architectures
- Recent architecture on augmentation and regularization
- Recent CNN and transformers based object detection methods
- Implementation of Attention and Transformer based models
- Hyperparameter & Model Architecture Tuning
- Recent segmentation models