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A B S T R A C T

In this paper, we focus on latent modification and generation of 3D point cloud object

models with respect to their semantic parts. Different to the existing methods which

use separate networks for part generation and assembly, we propose a single end-to-end

Autoencoder model that can handle generation and modification of both semantic parts,

and global shapes. The proposed method supports part exchange between 3D point

cloud models and composition by different parts to form new models by directly edit-

ing latent representations. This holistic approach does not need part-based training to

learn part representations and does not introduce any extra loss besides the standard re-

construction loss. The experiments demonstrate the robustness of the proposed method

with different object categories and varying number of points. The method can generate

new models by integration of generative models such as GANs and VAEs and can work

with unannotated point clouds by integration of a segmentation module.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

Deep learning applications in the 3D domain are becoming2

increasingly more popular, expanding on the already success-3

ful applications in the 2D image domain and there is a surge4

in the number of studies focusing on the artificial generation of5

3D models. Artificially generated 3D models have many uses6

in virtual environments, simulations, and 3D printing. Lead-7

ing companies are now providing AI tools that help users cre-8

ate better 3D models, make recommendations for more realistic9

models and correct errors in graphics for a better user experi-10

ence.11

A number of different data types can be used to represent 3D12

models. While mesh-based representation is popular in com-13

puter graphics, voxel-based representation is preferred in 3D14

data processing applications because of its simplicity. On the15

other hand, point clouds are the most prominent data type in16
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3D perception of the real world and they are popular in vari- 17

ous fields such as 3D scanners, robotics, autonomous cars, face 18

recognition, and human pose estimation. Detection, recognition 19

and segmentation are the main tasks in these fields and genera- 20

tion of 3D models in point clouds is expected to facilitate new 21

types of approaches for these tasks. 22

Real-world objects are composed of individual parts and 23

model generation systems should ideally be part-aware in-line 24

with this semantic composition. The basic approach in the liter- 25

ature is to generate parts separately and then assemble them to 26

form the complete object. However, this approach needs train- 27

ing different networks which are experts on specific parts and 28

a separate network to combine these parts. In this paper, we 29

propose a holistic approach to learn the semantic properties of 30

the parts with a single neural network model. The proposed 31

architecture is an Encoder-Decoder network that represents the 32

parts, in addition to the global shape, separately in the feature 33

space. Making modifications in the feature space allows mean- 34

ingful modifications by preserving semantic properties. This 35

is in contrast to the traditional way of making modifications in 36

the input space which results in a completely new model. The 37

http://www.sciencedirect.com
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contributions of the proposed method are as follows:1

• It handles part editing, modification and global model gen-2

eration with a single architecture and eliminates the need3

for an additional network for part assembly. The parts gen-4

erated by modifications of latent space stay coherent with5

the global shape.6

• It does not require any additional loss function other than7

the standard reconstruction loss.8

• It provides a generic solution to convert regular generative9

networks based on PointNet feature extraction into part-10

aware networks.11

• It is scalable and can be used with different point cloud12

sizes, objects having different numbers of parts and parts13

having different resolutions.14

• It can process models without any explicit part information15

during inference by integration of a segmentation module.16

The paper is structured as follows: Section 2 summarizes the17

literature on point cloud generation with necessary background18

information. Section 3 explains the proposed method in detail.19

Section 4 gives the details of the experiments and the visualiza-20

tion of sample results. Section 5 provides the conclusions and21

directions for future work.22

2. Background and Related Work23

2.1. Point clouds24

Point clouds are a set of unstructured points in a 3D coordi-25

nate system that defines 3D models. Capturing, visualizing and26

modification of point clouds are simpler compared to the other27

3D representation methods since the data points only have po-28

sition variables for a point p and some extra information such29

as color value when needed. A 3D model can be defined by30

a varying number of points and the higher the number points,31

the better and more detailed is the representation. While cap-32

turing and modification of point clouds is straightforward, the33

processing in this domain is challenging due to the following34

properties:35

Point clouds are unstructured and points have no connectiv-36

ity information. The nearest or sequential points cannot be as-37

sumed to be neighbors since they may be in different semantic38

parts. The proposed method uses a point-wise feature extractor39

to process points independently without any connection infor-40

mation.41

Points in a point cloud model can be in any order. A point42

cloud with N points can be defined by N! permutations of order-43

ing. The proposed method uses order invariant part and global44

feature extractors to deal with the ordering problem.45

Point clouds can have arbitrary number of points. The num-46

ber of points is not constant and can be increased or decreased to47

have different resolutions. However, most of the models assume48

a fixed input size. The proposed method utilizes max-pooling49

operation to extract the important points for feature extraction50

allowing use of an arbitrary number of points.51

PointNet [1] is the most popular neural network based ap- 52

proach for point cloud processing. It provides an end-to-end 53

solution to extract global and local features and it is an effective 54

baseline for a range of tasks such as object classification, part 55

segmentation, and scene semantic parsing. PointNet++ [2] is 56

an extended version of the original PointNet which uses a hier- 57

archical neural network that applies PointNet recursively on a 58

nested partitioning of the input point set. PointNet++ uses sam- 59

pling and grouping layers to extract features from local point 60

neighborhoods. Neighboring points may belong to different 61

parts, so these layers must also be redesigned for part consider- 62

ations. As the proposed method introduces a new step for part 63

feature extraction in intermediate layers, it would not be possi- 64

ble to use PointNet++ directly. Hence the standard PointNet is 65

adopted since it provides a holistic approach for feature extrac- 66

tion. 67

Some approaches convert point clouds into different rep- 68

resentations to tackle with the aforementioned problems. 69

DeepSDF [3] uses Signed Distance Functions to represent 3D 70

shapes with continuous functions for easier processing of them 71

in neural networks. While continuous functions do not suffer 72

from the same problems as point clouds, pre-processing and 73

post-processing steps are necessary for conversion. Also, it is 74

not straightforward to represent semantic parts of 3D shapes 75

with continuous functions. PointConv [4], KPConv [5], VV- 76

Net [6] and Monte Carlo Convolution [7] focus on developing 77

new convolutional methods. While these studies are reported to 78

have better results than PointNet for segmentation and classifi- 79

cation, they are not designed for point specific feature extrac- 80

tion. Hence, they are not directly applicable for the part modifi- 81

cation and generation problems, which are the main objectives 82

of this paper. 83

2.2. Generative Models 84

Generative Adversarial Networks (GAN). [8] consist of 2 dif-

ferent neural networks; Generator G and Discriminator D.

While the Generator generates new realistic samples, Discrimi-

nator aims to distinguish between real and fake samples and it is

trained by a loss measure calculating the difference between the

predictions and true values. Generator aims to fool the Discrim-

inator so it needs to generate as realistic samples as possible. At

each iteration, Discriminator gets better at distinguishing real

and fakes samples and Generator gets better at generating more

realistic samples. The whole system is a minimax game be-

tween Generator and Discriminator. Assuming x is real data

and z is a latent variable, GAN loss function can be defined as:

min
G

max
D

V(D,G) = Ex∼pdata(x)[log D(x)] +

Ez∼pz(z)[log (1 − D(G(z)))]
(1)

While GAN can generate novel and realistic samples, training

may become unstable in the long run, resulting in mode col-

lapse. Also GAN suffers from lack of diversity in generated

samples. WGAN [9] proposes a better objective function using

Wasserstein distance to address these problems:

min
G

max
D

V(D,G) = Ex∼pdata(x)[D(x)] −

Ez∼pz(z)[D(G(z))]
(2)
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Variational Autoencoder (VAE). [10] architecture is an exten-1

sion of Autoencoder (AE) architecture addressing the content2

generation problem and the main difference lies in the bot-3

tleneck layer. AEs represent each input sample with a latent4

variable in a lower dimension. This may lead to an overfitting5

problem since the network is not trained for a regularized latent6

space. Latent space may not be continuous and some points in7

this latent space may represent meaningless samples in the in-8

put space. VAEs represent each input sample with a distribution9

by adding a regularization loss to the reconstruction loss. Reg-10

ularization imposes latent space to belong to a standard normal11

distribution so any random point generates a new meaningful12

sample.13

A comprehensive analysis of different point cloud generation14

models is provided in [11] where the PointNet model is used as15

an Encoder and a multi-layer perceptron is used as a Decoder.16

Chamfer Distance (CD) and Earth Mover’s Distance (EMD) are17

used to calculate the reconstruction loss. PointFlow [12] pro-18

poses a probabilistic framework for 3D point cloud generation19

using continuous normalizing flows. To modify the generated20

samples of these global shape generators, interpolation and la-21

tent space arithmetic are used. While these techniques can be22

used to modify samples generated by all different latent repre-23

sentation models (AEs, GANs, etc.), they only allow control24

over the existence of an attribute and not the desired shape.25

Also, direct part modification is not possible since there is only26

a global latent code that controls the shape with an entangled27

representation.28

For part editing and generation, the most popular approach29

is reconstructing or generating the parts separately by different30

networks and then assembling them to form the global shape by31

an additional composition network. In [13], a ”Spatial Trans-32

former Network” is used to combine the generated parts by ap-33

plying affine transformations. CompoNet [14] uses a separate34

Encoder-Decoder model for each part. Encoders are used to get35

codes for each part and a composition network outputs trans-36

formation parameters per part. The generated parts are warped37

together using the transformation parameters. In [15], VAE-38

GANs (Variational Autoencoder Generative Adversarial Net-39

works) are used to generate parts instead of naive AEs. VAE-40

GAN uses a Variational Autoencoder instead of a Generative41

network, so it is an Encoder-Decoder-Discriminator architec-42

ture. In [16], an inverse approach is adopted where a low-43

resolution global shape is generated first and then a part refiner44

module enhances the generated parts by refining and complet-45

ing the missing regions. Most of these studies use voxels as46

input data because of the ease of data processing. Most part47

based studies assume that different parts have the same number48

of points. Tree-GAN [17] uses a tree-structured graph convo-49

lution network for multi-class generation. It allows semantic50

part generation and modification of newly generated samples,51

but lacks the ability to encode and reconstruct existing shapes.52

StructureNet [18] (followed by StructEdit [19]) is one of the53

pioneer studies for part editing and generation. It uses two54

encoders and two decoders, one to process geometry and one55

to process relations between parts with graph networks. The56

main aim is to encode-decode structures as well as generating57

new ones. While the results are very detailed, the model re- 58

quires training with fine-grained and hierarchical part annota- 59

tions, which is not always available. We designed our system to 60

work with a simple labeling indicating to which part a point be- 61

longs to. Also we expect from our system to learn the relations 62

between parts without specifically trained for it since it operates 63

on latent space for semantic modifications. 64

There are a few studies that directly operates on meshes. 65

SDM-Net [20] generates structured deformable meshes using 66

a 2-level VAE based approach for learning part geometries and 67

structures. COALESCE [21] aims for component-based shape 68

assembly to align the parts and synthesize part connections to 69

form plausible shapes. It uses two different networks for align- 70

ment and joint synthesis tasks. 71

The studies in the literature use multiple neural networks 72

with different architectures to solve the problem of shape gen- 73

eration with respect to parts. The parts are generated indepen- 74

dently and then they are processed by scaling, positioning and 75

rotating to form a meaningful global shape. We aim to solve 76

the problem with a single neural network that can handle part- 77

aware global shape generation without any need for additional 78

processing to form a meaningful global shape. The disentan- 79

gled latent space allows exchanging and removal of existent 80

parts or generation of new parts that fits the global model. Part 81

generation is an intermediate step of the main process that re- 82

sults in global shape generation. The proposed method provides 83

a holistic approach that generates the global shape with respect 84

to part semantics instead of generating the parts separately. The 85

proposed method can work on unannotated point clouds with 86

the additional segmentation ability. The simplicity of the ap- 87

proach allows using a smaller model with fewer parameters than 88

previous studies. 89

3. Proposed Method 90

The proposed method is an end-to-end system consisting of 3 91

modules: Feature extractor, Segmentation and Decoder which 92

are explained in Sections 3.1, 3.2, and 3.3 respectively. A gen- 93

erative module can also be integrated to provide generative ca- 94

pabilities which is explained in Section 3.4. 95

3.1. Feature Extractor 96

The feature extractor is based on a modification of the stan- 97

dard PointNet architecture and introduces a part feature extrac- 98

tion step between the point feature extraction module and the 99

global symmetric function (Fig. 1). The point feature extractor 100

is a multi-layer perceptron (MLP) model that takes n points and 101

outputs l features for each point. PointNet applies max-pooling 102

on the first axis to get the global feature. Max-pooling is a 103

symmetric function and it gives the same result for the same 104

input in any order so it is invariant to permutations of the in- 105

put set. In the proposed method, instead of directly applying a 106

global max-pooling, max-pooling is applied on a part to get an 107

individual part feature. After this step, max-pooling is applied 108

again on these part features to obtain the global feature for the 109

whole shape. The idea is based on a 2-stage max-pooling op- 110

eration which can be defined as max of maxes similar to the 111
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”reduce max” operation in parallel programming. Directly ap-1

plying max operation on a vector of numbers gives the same2

result as applying the operation in multiple iterations. In this3

context, the first max operation is used to get part features and4

the subsequent max is used to get the global feature. In this way,5

while obtaining the same global feature as the original network,6

a number of separate part features are also obtained. This oper-7

ation is shown in Eq. 3 where h is approximated by MLP and8

symmetric function g is max-pooling.9

fp=1,...,k({x1, ..., xn}) ≈ gp=1,...,k(h(x1), ..., h(xn))

fs({x1, ..., xn}) = g( fp=1, ..., fp=k)

f : 2R
n

→ R, h : Rn → R
l, g : Rl × ... × Rl → R

(3)

Assuming S ∈ R
n×3 is a point cloud having n points, the10

point feature extractor extracts l features from each point x out-11

putting a n × l point feature matrix fx ∈ R
n×l. Both part feature12

extractor and segmentation module are fed with the point fea-13

ture matrix. The part labels are extracted by the segmentation14

module. The part feature extractor applies max-pooling on each15

part separately (gp=1,...,k), by taking the part labels into account16

and produces k separate part feature vectors ( fp ∈ R
k×l ), each17

having a size of l. Then a k × l matrix is formed by concatenat-18

ing these vectors together. The global feature extractor applies19

global max-pooling g to produce a global feature fs ∈ R
l of20

size l. By this way, k individual part features, in addition to a21

global feature, are obtained. The part features can be modified22

individually to change the part only or the global feature can23

be modified to change the global shape. This allows modifica-24

tion of specific parts, in addition to the modification of global25

shapes.26

3.2. Segmentation27

The part feature extractor needs part labels to generate part28

features. In part-segmented point cloud datasets, for a model29

with k parts (For example, a chair model has k = 4 semantic30

parts; seat, back, arm and leg), represented with n points, there31

are n labels, associating each point with a part label. While32

there are part labels in annotated datasets, such information is33

rarely available in real conditions. Segmentation module is em-34

ployed to segment the unlabeled point clouds to get part labels.35

It uses point features generated by the point feature extractor36

to generate per-point part labels. Then these labels are fed to37

the part feature extractor. During the training, the segmentation38

module is trained together with the system using the ground39

truth part labels from the training data. During inference, the40

segmentation module generates the part labels, eliminating the41

need for ground-truth part labels and making the system an end-42

to-end solution for unannotated point clouds.43

As an alternative to end-to-end training with the whole sys-44

tem, the module can be trained in isolation or can be trained45

using a pretrained point-wise feature extractor. All training46

options generate similar results within a range of 2% with re-47

spect to segmentation performance. The point features can be48

concatenated with global features to improve the segmentation49

performance, allowing segmentation by considering local and50

global features together. This method decreases segmentation 51

loss significantly over using the point features only. The global 52

features are extracted by a max operation on point features. 53

The aim of the segmentation module is to predict part labels 54

when they are not available. If the part labels are available, 55

then this module can be omitted and these labels can directly be 56

fed into the part feature extractor. This makes the reconstruc- 57

tion performance better as expected since the part labels are not 58

predictions but ground truths. While this is a better option for 59

reconstruction performance, it eliminates the ability of the sys- 60

tem to work with unannotated raw point clouds. 61

3.3. Decoder 62

The aim of the decoder is to generate a n×3 point cloud from 63

the global feature vector l. An MLP or a Deconvolutional model 64

can be employed for this purpose. The decoder is trained with 65

reconstruction loss to enforce reconstruction of a given sample 66

with the minimum loss. Decoder learns to generate correspond- 67

ing global shapes for given global feature vectors. Modified 68

feature vectors are fed to the decoder to get the modified point 69

cloud models. Segmentation module can be used for segment- 70

ing the generated samples if necessary. 71

3.4. Generative capabilities 72

The proposed method has an inherent capability to form new 73

shapes by part feature exchange and by combining different part 74

features. In addition, it allows integration of generative models 75

to generate completely new parts and shapes. For this purpose, 76

we created two variants using two different generative models: 77

latent-space GAN (l-GAN) and VAE. l-GAN model and VAE 78

sampling layers were integrated in between the part feature ex- 79

tractor and the global feature extractor to expand the system to 80

have part generation ability -in addition to its ability to generate 81

the global shape-. 82

Latent-space GAN (l-GAN) [11] works in latent space in- 83

stead of the actual data space. A naive GAN is placed between 84

the Encoder and Decoder that takes part features of the dataset 85

as real input and aims to generate fake part features that result 86

in realistic shapes when decoded. A WGAN has also been im- 87

plemented to work in the latent space (l-WGAN) to observe the 88

differences. Gradient penalty has been applied and Discrimina- 89

tor has been trained more for more stable training [22]. 90

While there are different AE implementations for point

clouds based on PointNet, VAE based ones may fail because of

the imbalance between regularization and reconstruction qual-

ity. Such models suffer from poor reconstruction/poor gener-

ation capabilities [11]. To overcome the imbalance problem,

an additional coefficient β is used to weigh the regularization

term. The objective function of VAE can be defined using a

variational lower bound as [23]:

L = Eqφ(z|x)[logpθ(x|z)] − βDKL(qφ(z|x)||p(z)) (4)

where q and p are data projection and generation mod- 91

ules with parameters φ and θ respectively and DKL is Kull- 92

back–Leibler divergence [24]. 93
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Fig. 1: The proposed architecture consists of a point-wise feature extractor, a part feature extractor, a global feature extractor and a decoder. The optional generative

model allows generation of new parts and models. The optional segmentation module allows the system to work with unlabeled data.

4. Experimental Evaluation1

Dataset:. We used re-organized annotated ShapeNetPart2

dataset [25], which is a subset of the highly popular ShapeNet3

3D dataset [26]. It contains part labels for more than 160004

models in 16 categories and the number of parts for each cat-5

egory varies from 2 to 6. Each point in the point cloud sam-6

ple has a semantic part label. From these 16 categories, chair,7

table and plane categories have been used for the study since8

they have the highest number of samples (3758, 5266 and 26909

samples, respectively). Each sample has a different number of10

points varying from 500 to 3000 points. For all the experiments,11

2048 points per sample have been used, unless otherwise stated.12

To set all the samples the same size, random down-sampling13

or zero-padding have been applied. Parts can have any num-14

ber of points for each model. Official train, validation and test15

subsets are used with 70%, 10% and 20% ratios respectively.16

PyTorch has been used for implementation and PyTorch3D has17

been used for 3D operations [27]. The training took a few hours18

on a NVIDIA RTX2070 GPU for the base model. Code is pub-19

licly available at20

https://github.com/cihanongun/LPMNet21

Distance metrics:. Chamfer distance (CD) and Earth Mover’s

Distance (EMD) are the most commonly used metrics to mea-

sure the similarity of point clouds and compute the reconstruc-

tion error [28]. Both these metrics are permutation invariant and

work on unordered sets. Chamfer Distance is a nearest neigh-

bor distance metric for point sets. It is the squared distance of a

point in the first set to the nearest neighbor point in the second

set. Chamfer Distance between two point clouds S 1 and S 2 is

defined as:

dCD(S 1, S 2) =
∑

p1∈S 1

min
p2∈S 2

‖p1 − p2‖
2
2+

∑

p2∈S 2

min
p1∈S 1

‖p1 − p2‖
2
2

(5)

Earth Mover’s Distance (EMD) [29] (a.k.a. Wasserstein Met-

ric) is an algorithm to measure the effort to transport one set to

another. EMD for two equal-sized point clouds S 1 and S 2 is

defined as:

dEMD(S 1, S 2) = min
φ:S 1→S 2

∑

p∈S 1

‖p − φ(p)‖2 (6)

where φ is a bijection. While in practice, the exact computa- 22

tion of EMD is prohibitively expensive, an approximate method 23

with reported approximation error around 1% has been used 24

[28]. 25

The Base model:. The AE architecture is inspired from [11]. 26

The feature extractor is a PointNet model consisting of a 3-layer 27

MLP (64, 128, l) with weight sharing. Each layer is followed 28

by a ReLU activation function and a batch normalization layer. 29

Input and feature transform subnetworks are omitted since the 30

samples are already aligned. It has been observed that the orig- 31

inal 5-layer architecture has no advantage over the proposed 32

model even with more features. The segmentation module fol- 33

lows a similar architecture (64, 32, 16, k) with weight sharing 34

and a softmax function at the end and it is trained with a classi- 35

fication loss. A 3-layer architecture gives similar performance 36

with less overfitting but the performance drops with increasing 37

feature size. Higher number of layers cause overfitting as the 38

data is not complex and the proposed model is trained with sin- 39

gle class. However, a more sophisticated architecture can be 40

employed for more complex input data. The decoder gener- 41

ates the point cloud model with 3 fully connected layers (1024, 42

2048, n × 3) and the first two layers are followed by a ReLU 43

function. Fewer number of layers fail to generate high qual- 44

ity samples while models with higher number of layers tend to 45

overfit to training data. A model with deconvolutional layers 46

is also a viable option. A 5-layer (512, 256, 256, 128, 3) de- 47

convolutional architecture has similar performance to the base 48

model with less overfitting. However, deconvolutional model 49

is sensitive to feature size and it fails when feature size is high 50

(e.g. 1024). For the base model, the feature size l is 128 and 51

number of points n is 2048. The system has been trained using 52

Chamfer distance as reconstruction loss and cross-entropy loss 53

as segmentation loss. Adam optimizer [30] has been used with 54

a learning rate of 5 × 10−4 for 1000 epochs. 55

https://github.com/cihanongun/LPMNet
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Fig. 2: The reconstruction losses for different feature sizes.

Experiment design:. To evaluate the proposed method, we have1

conducted a number of experiments similar to those in the lit-2

erature and introduced new ones. Unless otherwise stated, the3

base model has been used in all experiments. Evaluation of4

the reconstruction performance is provided in Section 4.1, fol-5

lowed by the evaluation of new model generation performance6

in Section 4.2. The study is compared with the related works7

in Section 4.3. The proposed method has been tested with dif-8

ferent input sizes to prove its robustness against low-resolution9

data and missing points and the results are provided in Section10

4.4.11

4.1. Evaluation of Reconstruction12

We first evaluated the effect of different feature (bottleneck)13

sizes. Fig. 2 shows the reconstruction losses calculated us-14

ing Chamfer and EMD for different feature sizes for the chair15

category. The proposed method and the baseline method [11]16

exhibit a similar trend that both suffer from higher reconstruc-17

tion loss when the feature size is less than 128. In addition,18

to evaluate the effect of the part feature extractor on the recon-19

struction quality, the proposed part feature extractor has been20

integrated into the baseline method [11]. The results show no21

significant difference, supporting our claim that the global fea-22

ture is not affected by the part feature extraction step. Accord-23

ing to Fig. 2, a feature size of 128 provides a good balance to24

run the system with a smaller feature space without sacrificing25

reconstruction performance; so the feature size is set to 128 for26

all experiments.27

The reconstruction results on the test set can be seen in Fig.28

3. Visual results indicate good reconstruction performance with29

minor loss.30

Part interpolation and part exchange experiments aim to val-31

idate that a regularized part feature space can extract the part32

features separately and parts can be exchanged between differ-33

ent generated shapes. Then, we show that different parts from34

different shapes can be used to compose new shapes.35

Part interpolation and part exchange:. By modifying the part36

feature, shape of a respective part could be changed in isola-37

tion, keeping the other parts the same. To prove this claim,38

Fig. 3: The reconstruction results of the proposed model. For each object class,

the first row shows the samples from the unlabeled test set and the second row

shows the corresponding reconstructions.

we apply part interpolations for all parts separately and show 39

the results in Fig. 4. Global feature interpolation results in a 40

smooth interpolation between two different shapes reflecting a 41

regular and continuous latent space. Part feature interpolation 42

interpolates only a specific part and assembles the new part into 43

the existing sample. Here it can be seen that it is not a naive 44

part assembly transplanting a part into another shape. Latent 45

space represents the semantic properties of a part so it gener- 46

ates a part that matches better to the new shape by preserving 47

semantic properties. For example, using the leg part feature of a 48

four-legged chair with an office chair having wheels generates 49

the same office chair with four legs instead of wheels. How- 50

ever, the leg part will not be the same as the source chair since 51

it would not be a good fit for the target office chair. The of- 52

fice chair is now generated with four legs which are in better 53

harmony with the rest of the shape resulting in a more realistic 54

looking chair. Results for other classes can be seen in Fig. 15. 55

Composition of separate parts:. In the proposed architecture, 56

part features can be extracted independently for composing new 57

shapes. Parts are expected to be independent of each other to 58

form new global shapes. To test the validity of the indepen- 59

dence assumption of the parts, different part features from dif- 60

ferent models are merged to obtain a global feature. This global 61

feature is then used to generate a global shape with these parts. 62

Part features carry the semantics of corresponding parts. With 63

global feature extraction, a global feature is formed from part 64

features that gathers all semantics together. The decoder gen- 65

erates a global shape from global feature that represents all se- 66

mantics. Sample results can be seen in Fig. 5. A new shape is 67

formed by the selected parts without any need for assembling 68
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Fig. 4: Part interpolation between two shapes. The first row is global shape interpolation between two shapes (leftmost and rightmost). Other rows are single part

interpolations where only the corresponding part feature is interpolated while features of other parts are kept the same.

the parts together with affine transformations. It has to be noted1

that the parts may not be exactly the same as they are in source2

shapes. The parts may get modified for a more coherent com-3

position. The experiments validate that new samples can be4

generated using different parts from different shapes.5

Back Seat Leg Arm Composition

Body Wings Tail Engines Composition

Top Foot Composition

Fig. 5: Part features from different samples are combined together to form a

new shape. Parts may not be exactly the same as they are in source shapes for a

more coherent composition.

4.2. Evaluation of New Model Generation6

The method can be extended to have generative capabilities7

by integration of generative models. In this section, we evaluate8

the generation of new global shapes and parts by integrating two 9

separate models: GAN and Variational Autoencoder (VAE). 10

Latent-space GAN based architecture [11] uses encoded data 11

as its input and output. Generator is a 3-layer MLP (128, l, 12

k × l) for k parts and the Discriminator mirrors the Generator. 13

Generator input is a 128-dimensional vector sampled from a 14

Normal distribution. l-GAN has been trained using Adam op- 15

timizer with a first-moment value of 0.5 and learning rates of 16

5 × 10−4 and 1 × 10−4 for Generator and Discriminator respec- 17

tively. GAN has been trained with the pretrained model to ex- 18

tract and decode features. WGAN follows the same architecture 19

with a different objective function. 20

VAE based architecture follows the base model with an ex- 21

ception of the sampling layers, which are now fully connected 22

layers to generate mean and sigma values. Regularization term 23

has been normalized with input dimension and β parameter has 24

been set to 0.1 since it provides a good balance between recon- 25

struction and generation quality. Reparametrization trick has 26

been employed and the system has been trained using Adam 27

optimizer [30] with a learning rate of 10−3 for 10000 epochs. 28

For new data generation, latent codes have been sampled from 29

a Normal distribution. Generated samples can be seen in Fig. 6 30

for chair class and Fig. 16 for plane, car and table classes. 31

For the evaluation of generative models, we have used the 32

following metrics: Coverage (Cov), Minimum Matching Dis- 33

tance (MMD) and Jensen–Shannon Divergence (JSD) [11]. 34

Cov measures the representation of a point cloud set S 2 in set 35

S 1. It is the fraction of point clouds in one set that is matched 36

to others by finding the nearest neighbor. MMD is the average 37
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Fig. 6: Samples from generative models. VAE provides good reconstruction and generation capabilities. While standard GAN is able to generate good results, it

suffers from lack of diversity. WGAN generates more diverse results.

of distances between the matched point clouds in different sets.1

JSD is the distance between 2 probability distributions, it is de-2

rived from Kullback–Leibler divergence [24]. In this scope, it3

is used as a measure of occupation of similar locations in 3D4

coordinate space between two point cloud sets. MMD and Cov5

have been calculated using both CD and EMD. Total Mutual6

Difference (TMD) [31] is used to measure the diversity of the7

generated shapes when one or more parts are changed. It is cal-8

culated by finding the average Chamfer distance of all shapes9

with generated parts for a given input shape. A higher score10

is better for Coverage and TMD and a lower score is better for11

MMD and JSD.12

New samples are generated by five different approaches: (i)13

part feature exchange: randomly exchanging part features be-14

tween different samples, (ii) part feature composition: com-15

posing new shapes by combining different part features from16

different random samples, (iii) VAE: new shapes are generated17

by sampling from a Normal distribution using VAE, (iv) GAN:18

GAN is used after training to randomly generate new shapes, (v)19

WGAN: WGAN is used instead of GAN for more diversity and20

more stable training. All models have been trained with CD and21

EMD. A sample set is formed by generation results, which is 322

times the size of the test set. Results can be seen in Table 1. As23

expected, the results are in favor of the models trained with the24

same distance metric as the evaluation method. Part exchange25

has the lowest distance score with a high coverage. This is ex-26

pected since only a single part per sample is different from the27

reference test set. Also, high coverage supports the similarity28

between the test set and the part-exchange set. The random part29

composition approach exhibits good diversity and novelty com-30

parable with the generative models. GAN implementation ex-31

hibits overfitting and collapses to a single mode especially when32

trained with EMD distance. WGAN achieves better diversity as33

expected with better coverage scores than GAN. VAE performs34

similar to WGAN indicating good sampling capability besides35

reconstruction. Plane class has lower MMD and JSD distance36

scores than other classes since the plane models are smaller,37

more dense, less diverse and occupy less area. The results show38

that different alternatives are successful at different aspects and 39

they may serve different tasks better depending on the quality, 40

diversity or complexity requirements of a particular task. 41

TMD is calculated by generating 10 samples for each shape 42

by changing one or more parts while keeping the other parts the 43

same. TMD results for the chair class are reported in Table 2, 44

and sample visualizations are provided in Fig. 7. As expected, 45

for all models, TMD score gets higher when higher number of 46

parts are generated. The exchange approach performs the best 47

since it exchanges the parts with the already existing ones in the 48

dataset. Other methods generate new parts from scratch, thus 49

showing less diversity. The results for table and plane classes 50

are provided in Table 5 and 6 respectively. 51

B
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k
S
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t
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rm

Fig. 7: Samples from part exchange and generation for an existing model (most

left).
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Table 1: Evaluation of generative models based on Minimum Matching Distance (MMD), Coverage (Cov), and Jensen-Shannon Divergence (JSD×10−2). Both CD

(×10−4) and EMD (×10−2) metrics are used for evaluation. CN is the part-assembly based approach CompoNet[14]. Ach. is the best generative method (l-WGAN)

reported in the baseline study Achlioptas et al.[11]. Tree-GAN results are reported in [17]. The best results, among only the generative models, are marked in bold.

chair table plane

MMD % Cov MMD % Cov MMD % Cov

Model CD EM CD EMD JSD CD EMD CD EMD JSD CD EMD CD EMD JSD

Trained with CD

Exc. 14.39 9.53 72.65 32.03 4.88 13.45 7.69 70.31 34.37 3.13 3.90 5.85 69.53 14.06 3.73

Comp. 17.50 9.86 56.25 25.78 5.58 15.77 7.83 67.19 32.03 3.81 4.40 5.99 60.93 11.71 4.18

VAE 14.77 10.24 69.53 28.12 6.74 13.62 7.96 71.87 40.62 3.40 3.43 6.41 59.59 14.84 5.64

GAN 22.41 10.39 34.37 19.53 8.97 33.38 9.94 21.09 14.84 8.00 6.39 6.31 24.21 7.81 5.98

WGAN 15.76 9.64 52.34 21.87 5.88 16.40 7.95 60.15 35.16 4.93 4.76 5.76 60.93 15.62 4.17

CompoNet [14] 40.63 10.11 28.90 32.03 7.65 87.07 14.14 30.46 14.85 22.99 20.02 8.41 19.53 16.4 17.83

Tree-GAN [17] 16.00 10.10 58.00 30.00 11.90 18.00 10.70 66.00 39.00 10.05 4.00 6.80 61.00 20.00 9.70

Trained with EMD

Exc. 18.10 6.64 71.09 76.56 1.66 17.01 5.94 75.00 78.12 1.99 4.45 3.80 72.65 67.18 2.05

Comp. 22.14 7.32 56.25 61.71 2.02 19.41 6.48 70.31 72.65 2.46 5.41 4.21 59.37 53.12 2.74

VAE 23.87 7.84 55.47 67.19 4.28 23.58 7.23 50.78 60.15 4.32 5.29 4.14 57.04 53.12 3.54

GAN 34.48 8.99 23.43 24.21 6.41 32.87 8.34 31.25 38.28 6.10 6.23 4.61 42.96 35.15 3.51

WGAN 23.11 7.44 56.25 60.93 3.01 20.71 6.79 66.40 71.87 3.32 6.03 4.31 57.07 52.34 2.62

Ach. et al. [11] 21.95 7.06 70.31 66.4 2.74 20.75 6.64 69.53 73.43 2.76 6.49 4.21 57.03 60.93 3.25

Table 2: Total Mutual Difference (TMD×10−2) [31] scores for part exchange

and generation. One or more parts are changed by keeping the others the same.

# of changing parts

Model 1 2 3 4

Exchange 1.31 3.47 4.66 4.85

VAE 1.06 2.54 3.33 3.54

l-GAN 0.79 1.96 2.41 2.60

l-WGAN 1.22 2.53 3.38 3.48

Wu et al. [31] 2.28 2.81 2.96 3.19

4.3. Comparison with related works1

The results of the proposed work and related works are pro-2

vided in Table 1. CompoNet [14] is a part-assembly based3

approach. It has separate Autoencoders trained with CD for4

different parts and these individually generated parts are then5

brought together by a part-assembly network. The results show6

that, the proposed method outperforms CompoNet in all cases.7

Although part generation of this method is satisfactory, the part-8

assembly step generates incoherent global shapes, which fail to9

exhibit seamless connection between parts. Also, points are10

not distributed evenly across the global shape as there are fixed11

number of points per part. The best generative model in the12

baseline study (l-WGAN trained with EMD) is selected for the13

comparison [11]. As expected, the proposed method has similar14

performance with the baseline method, since both these meth-15

ods become equivalent for global shape generation. However,16

the proposed method has additional part-based capabilities as17

mentioned above. Tree-GAN [17] has comparable results with18

the other generative models. However, it cannot be evaluated19

with regards to part exchange and composition performance as20

it lacks reconstruction abilities. Its MMD and Coverage re-21

sults are inferior for chair and table classes. While it has bet-22

ter results for Coverage of plane class, the difference is only 23

marginal. StructureNet uses a fine-grained, hierarchical dataset 24

for structure encoding, hence its results cannot be evaluated 25

on the dataset used in these experiments. To allow compar- 26

isons with StructureNet, we conducted a separate experiment, 27

by training our method on their dataset, and presented the re- 28

sults in Section 8.1 as supplementary comparisons. 29

The qualitative results can be seen in Fig. 8. The proposed 30

method and the baseline (Achlioptas et al. [11]) show similar 31

generation quality and diversity. However, the baseline method 32

does not have any part information and only considers global 33

shapes. The part-assembly based CompoNet [14] is able to 34

generate parts separately, but it has difficulty assembling and 35

connecting the generated parts. By using a part-based holistic 36

approach, (i) the proposed method can handle separate parts, 37

which is a capability lacking in [11] and (ii) it also generates a 38

complete coherent global shape in unison while handling sepa- 39

rate parts which is different to the two stage approach in [14]. 40

This eliminates the need for a separate part-assembly network 41

and potential problems associated with part-assembly. Struc- 42

tureNet [18] (results are downsampled to the same number of 43

points for fair comparison) generates diverse structures includ- 44

ing asymmetric ones. However, the generated samples suffer 45

from structural noise causing implausible shapes. Also, repre- 46

senting all parts with the same number of points leads to better 47

quality for small parts than large parts, especially becoming ev- 48

ident in low resolutions. 49

For the evaluation of shape completion capability, Total Mu- 50

tual Difference (TMD) results are reported in Table 2 by regen- 51

erating one or more parts. Wu et al. [31] is a shape comple- 52

tion network which completes the partial shapes with missing 53

parts by generating multiple outputs. The proposed method has 54

lower scores for few missing parts, but exhibits higher scores 55

when there are higher number of missing part. However, it has 56

to be noted that TMD evaluates the diversity of the whole shape 57
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Fig. 8: Randomly generated samples by different methods; Achlioptas et al. [11], CompoNet [14], StructureNet [18] and our model. Achlioptas et al. considers

only the global shape, CompoNet has difficulty assembling and connecting the generated parts. StructureNet can generate more diverse structures but suffers from

structural noise causing implausible structures.

and not only the generated part. While completing a shape with1

a new part, the method in [31] also causes changes in the other2

parts of the shape, which results in an increase in TMD score.3

This observation is supported by the low TMD score variance4

with respect to the different number of missing parts for this5

method.6

4.4. Robustness Against Different Input Sizes7

The same shape can be defined by using different number of8

points. So, the method is expected to have the ability to process9

different input point cloud sizes (resolutions) and give similar10

outputs. In this section, we evaluate the performance of the11

proposed method against different input sizes and compare the12

critical points extracted from different input sizes.13

To define a global feature, a feature extractor first detects the14

critical points, which are the most important points in a point15

cloud sample. The critical point set is the minimum number of16

points defining the shape. For example, the corner points are17

the critical points that define a triangle. The feature set defines18

the semantics of the shape irrespective of the resolution, so a19

higher resolution sample also results in the same global feature20

set (i.e., the corners of a triangle).21

The proposed method is expected to extract the same fea-22

ture set for a shape defined with different number of points.23

These features can then be decoded to reconstruct the shape24

at any size. To test this, the original input has been randomly25

downsampled to 1024, 512, 256 and 128 points from 204826

points. Then these samples have been zero-padded to obtain27

2048 points and the zero-padded points have been labeled as28

part 0. Then, these samples have been fed into the pretrained29

network to reconstruct the shape. Since the network ignores30

part 0 for feature extraction, it extracts the same features for31

all input dimensions. The results in Fig. 9 shows that the sys- 32

tem can handle different input dimensions by giving the same 33

features for the same shapes. The results are not affected by 34

the lack of zero-padded samples during training. Also, this ap- 35

proach can serve as an upsampling network without training 36

from scratch. It has to be noted that a lower number of input 37

points result in poorer reconstructions since some critical points 38

vanish due to random downsampling. Removing batch normal- 39

ization layers improves robustness with more independent point 40

features. 41

5. Conclusions 42

In this paper, a generic part-aware architecture allowing ex- 43

changing of parts between different models and generating new 44

point cloud models and parts has been proposed. The proposed 45

system is based on a single network and does not need sepa- 46

rate networks for each part or an additional network to assem- 47

ble them to form a new shape. The system has been proven to 48

work with different object categories having different numbers 49

of parts and varying sizes. The system provides an end-to-end 50

solution for unlabeled data with the integration od a segmenta- 51

tion module. It has been shown that GANs and VAEs can be 52

integrated into the proposed method to generate new parts and 53

models. 54

In the proposed method, while a part feature represents the 55

corresponding part in a global shape, the decoder takes a global 56

feature as input and outputs a global shape. While the method 57

cannot reconstruct the parts separately, this is not considered to 58

be a significant limitation as the ultimate aim in most applica- 59

tions is to form a global shape. To reconstruct the parts sepa- 60

rately, the method must be trained with parts separately from 61
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Fig. 9: Reconstruction results from 1024 (top-left), 512 (top-right), 256 (bottom-left) and 128 (bottom-right) points to 2048 points.

scratch. Then, the global shape can be constructed from the1

parts by a composition model similar to those in the literature.2

Part modification and generation are complementary operations3

to get the global shapes.4

In some cases, reconstruction of uncommon samples (e.g.,5

asymmetrical samples, samples with incorrect labels) may fail,6

especially if they are only encountered in the test set. These7

samples are considered to be outliers by the network and they8

have limited effect in the learning and hence they are not rep-9

resented effectively by the network. Processing outliers is a10

common and challenging problem for neural networks based11

systems.12
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Table 3: The effect of different variations of feature extractor and segmentation

module based on reconstruction loss (Chamfer) and segmentation accuracy.

Rec. loss (×10−4) Seg. acc. %

Train Test Train Test

Base Model 3.61 5.93 96.23 93.51

Feature Extractor

PointNet [1] 3.92 6.06 96.35 93.84

Mean pooling 5.48 7.01 96.18 93.61

Segmentation module

No module 3.01 5.20 - -

Module failure 3.11 5.95 - -

No global features 4.24 6.04 87.47 86.95

Appendix 37

6. Ablation Study 38

The proposed framework allows replacement of the Feature 39

extractor and Segmentation modules. Table 3 summarizes the 40

reconstruction and segmentation performance by (i) substitut- 41

ing feature extraction with PointNet while keeping the other 42

modules the same and changing its pooling layer with mean 43

pooling; (ii) experimenting on segmentation module by remov- 44

ing it, using a sub-optimal segmentation module and using a 45

segmentation module omitting the global features. All varia- 46

tions are trained with the same parameters. 47

Replacing the feature extraction with PointNet does not pro- 48

vide any benefits since the samples are already aligned and the 49

system works with a single class. Since the input data has a 50

single class and limited diversity, a 3-layer model is sufficient 51

for extracting the necessary features and using 5-layers does 52

not provide any advantage. Replacing the max-pooling with 53

mean-pooling, which is also a symmetric operation, degrades 54

the results. Mean-pooling extracts the average of features rather 55

than selecting the most effective and critical features like max- 56

pooling. The extracted features represent an average model 57

with smooth edges and it causes poor reconstructions for com- 58

plex and unusual models which can be seen in Fig. 11. 59

To observe the effect of the segmentation module, we trained 60

the system without it and fed the ground truth part labels. Since 61

the part labels are not predictions but ground truths, the recon- 62

struction performance was better as expected. On the other 63

hand, elimination of segmentation module results in an undesir- 64

able effect of eliminating the ability of the system to work with 65

unannotated raw point clouds. We also deliberately hindered 66

the training of segmentation module and randomly initialized 67

the module to simulate segmentation failures where segmenta- 68

tion results are random. Interestingly, it is quantitatively better 69

than the base model because now each point is randomly as- 70

signed to different parts, thus each part is simply a downsam- 71

pled version of the global model. All part features are equal 72

to global feature so the system captures the global features bet- 73

ter. However, in this case, the system does not have any part- 74

based abilities anymore and not fit for purpose since all parts 75

are equivalent to global model. Lastly, the segmentation mod- 76

ule in the base system is trained with only point features (with- 77

out concatenating global features). Lower segmentation perfor- 78

http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1109/CVPR.2017.264
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Fig. 10: The reconstruction results of failure cases. The failures are mostly the result of outliers such as unusual and asymmetric cases.
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Fig. 11: Reconstruction comparison between models using max and mean pool-

ing.

mance highlights the importance of global features -alongside1

point features- in the segmentation performance.2

7. Failure Cases3

The samples with high reconstruction losses are visualized4

to analyze failure cases in Fig. 10 where the test samples are5

shown at the top row and their respective reconstructions at the6

bottom row. The unusual object samples in Fig. 10 (a)-(d) are7

outliers and their respective reconstructions are noisy. Chairs in8

Fig. 10 (a) and (b) have arms in the middle, this is not a com-9

mon occurrence in the training set and these arms could not be10

represented. Unusual leg shapes of chairs in Fig. 10 (c) and (d)11

can not be reconstructed well, resulting in high reconstruction12

loss. Reconstructed part labels are different for Fig. 10 (e) due13

to segmentation error. However, the reconstructed shape is still14

acceptable because leg and back parts are ambiguously defined.15

Chairs in Fig. 10 (f) and (g) have highly asymmetric shapes.16

Asymmetric shapes comprise less than 3% of the whole dataset,17

so the system can not adequately learn to represent them. This18

can be prevented by augmenting the dataset with further asym-19

metric samples. However, to generate novel asymmetric struc-20

tures, more explicit constraints must be defined. Fig. 10 (h) has21

Fig. 12: A challenging part (leg) interpolation between two distant shapes.

an unusual hole on the seat part, again not present in the training 22

set. All of the reconstruction errors are because of the lack of 23

representative samples in the training set and can be prevented 24

by extending the dataset with more diverse samples. 25

Interpolation between distant shapes such as the ones in Fig. 26

12 may not be successful. On the other hand, it can be argued 27

that, this operation is hardly plausible for humans as well. The 28

target leg on the right is not easy to seamlessly merge into the 29

original global shape on the left and the model does its best 30

to modify the source shape and leg to generate a semantically 31

acceptable global shape. This supports our claim that the sys- 32

tem makes semantic modifications. However, it cannot be loyal 33

to the original shapes for this case as this would interfere with 34

generating a semantically acceptable global shape. 35

8. Further Experiments 36

8.1. Supplementary Comparisons 37

StructureNet [18] is designed to work on a fine-grained 38

dataset hierarchically labeled with child parts such as PartNet 39

[32]. This dataset structure is fundamentally different to the one 40

we used in this work. So, in order to facilitate comparisons, we 41

have also trained our model with the PartNet where each part 42

and child parts have 1000 points. We have grouped all the child 43

parts into the same semantic definitions as we used such as seat, 44

back, leg and arm. Both models have been trained and evalu- 45

ated using CD. The results are reported for chair class, which 46
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Fig. 13: Reconstruction results of challenging cases for StructureNet[18] and

our model.

Table 4: Comparison with StructureNet on the PartNet [32]

Model MMD % Cov JSD

VAE 17.27 67.96 20.61

GAN 30.74 24.21 19.71

WGAN 21.93 62.50 10.34

StructureNet [18] 27.14 39.06 17.98

has 4871 samples divided with 7:1:2 ratio for training, valida-1

tion and test respectively, with 2048 points per sample.2

The average reconstruction error (Chamfer×10−4) for the3

global shapes is calculated as 30.18 for StructureNet and 12.114

for our model. The reconstruction results are similar for com-5

mon cases but the results for challenging cases can be seen in6

Fig. 13. Our results become noisy but represent the global7

shape better. The noise in StructureNet appears as structural8

inaccuracies since it makes structural encoding-decoding. It is9

also reported that noise in StructureNet may result in missing10

parts, duplicate parts, detached parts [18]. Considering both11

quantitative and qualitative comparison, the proposed model12

performs better at global shape reconstruction. StructureNet13

generates novel structures and parts using VAE. We compared14

the new sample generation capabilities of both models with the15

evaluation metrics we used. The results provided in Table 416

show that the proposed model has better MMD, Coverage and17

JSD scores.18

Visual interpolation results for different methods are pro-19

vided in Fig. 14. As StructureNet performs structure interpola-20

tion by its nature, it causes sharp structural changes. CompoNet21

performs per-part interpolation, however it suffers from part as-22

sembly problems in some steps. In both cases, the proposed23

model performs a smooth global shape interpolation, generat-24

ing plausible global shapes during the transition steps.25

8.2. TMD scores for other classes26

TMD results for table and plane classes can be found in Ta-27

bles 5 and 6 respectively. Table class has higher TMD scores28

relative to chair class since it has only 2 parts; top and leg. A29

missing part means half the parts of the model are missing and30

the completion causes higher diversity. Plane class has lower31

TMD scores, implying less diversity. This is expected since32
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Fig. 14: Interpolation comparison with StructureNet [18] and CompoNet [14]

between the same two shapes (leftmost and rightmost).

Table 5: Total Mutual Difference (TMD×10−2) scores for table class.

# of changing parts

Model 1 2

Exchange 5.27 9.89

VAE 3.31 6.02

l-GAN 3.27 4.64

l-WGAN 3.57 6.95

the plane models are smaller, more dense, less diverse and they 33

occupy a smaller space. 34

Table 6: Total Mutual Difference (TMD×10−2) scores for plane class.

# of changing parts

Model 1 2 3 4

Exchange 0.23 1.00 1.11 1.15

VAE 0.21 0.64 0.69 0.73

l-GAN 0.13 0.28 0.33 0.36

l-WGAN 0.21 0.69 0.77 0.80

8.3. Visualizations of other classes 35

Visualization results for part interpolation and generative 36

models for plane, car and table classes can be found in Fig. 37

15 and 16 respectively. 38
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Fig. 15: Part interpolation results for plane, car and table classes.



16 LPMNet: Latent Part Modification and Generation for 3D Point Clouds /Computers & Graphics (2021)
V

A
E

G
A

N
W

G
A

N
V

A
E

G
A

N
W

G
A

N
V

A
E

G
A

N
W

G
A

N

Fig. 16: Samples from generative models for plane, car and table classes.
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