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Abstract Existing methods for egocentric activity recognition are mostly
based on extracting motion characteristics from videos. On the other hand,
ubiquity of wearable sensors allow acquisition of information from different
sources. Although the increase in sensor diversity brings out the need for adap-
tive fusion, most of the studies use pre-determined weights for each source. In
addition, there are a limited number of studies making use of optical, au-
dio and wearable sensors. In this work, we propose a new framework that
adaptively weighs the visual, audio and sensor features in relation to their
discriminative abilities. For that purpose, multi-kernel learning (MKL) is used
to fuse multi-modal features where the feature and kernel selection/weighing
and recognition tasks are performed concurrently. Audio-visual information is
used in association with the data acquired from wearable sensors since they
hold information on different aspects of activities and help building better
models. The proposed framework can be used with different modalities to im-
prove the recognition accuracy and easily be extended with additional sensors.
The results show that using multi-modal features with MKL outperforms the
existing methods.
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1 Introduction

Widespread use of wearable devices such as hand-held cameras, sports and
action cameras (i.e., GoPro), mobile phones and accessories (i.e., Snap Spec-
tacles, Google Glass) made it possible to track and analyze daily activities of
individual users. It is known that physical inactivity increases the risk of car-
diovascular diseases, diabetes, breast cancer, and even mental disorders such
as depression [1]. For that reason, it is important to track the daily activi-
ties in an objective way by taking unbiased measurements. Egocentric activity
recognition (EAR) systems allow tracking daily activities automatically and
objectively. On the other hand, video-based EAR systems suffer from the stor-
age of large amounts of video data. Even though the storage capacity and video
compression techniques improve steadily, the resolutions of the videos are also
increasing. Thus, developing effective EAR systems to organize and summa-
rize videos is a crucial task. Activities of Daily Living (ADL) is another active
research field for EAR that is used to assist caregivers to track the activities
of elderly people by the help of rich sensor networks [2]. There are even rec-
ommendation systems that recommend music genres according to the type of
activity [3].

In the literature, the definition of activity and action varies according to
the application domain. Some of the works use activity and action interchange-
ably [4–6] while the others define activity (or complex activity) as a collection
of multiple actions (or atomic activities) that are identified over temporal
snippets using pattern-mining algorithms [7–9]. Egocentric datasets used in
this study do not include complex activities, but consist of atomic ego-actions
such as walking, running, shaking hand, hugging or petting. Accordingly, in
this work, egocentric activities are distinguished among video segments with-
out building a temporal relationship between actions and activities.

Vision-based methods for activity recognition have been mostly designed
for third-person videos and cannot directly be applied to first-person videos
(FPV). In contrast to third-person videos, in FPVs, the world is seen from the
perspective of actors within the context of their activities and goals. In this
case, the motion information (i.e., head movement for head-mounted cameras
or body movement for chest-mounted cameras) of actors are as important as
the motion of foreground objects in videos since the camera undergoes a large
amount of ego-motion such as spinning and falling down according to the ac-
tivity of the user. In addition, they are rapidly changing visual content due
to changes in lighting, location (indoor, outdoor) and high ego-motion. Con-
trary to third-person videos taken with wider angles, egocentric perspective
generally has a more limited perspective.

While the primary information source used in EAR is the FPVs, other
types of wearable sensors such as audio, accelerometer, gyroscope and Global
Positioning System (GPS) are also available [10]. One crucial problem here is
to use these data collectively to improve the performance of egocentric activ-
ity analysis, i.e., fast querying through a myriad of egocentric videos taken on
a daily basis. However, the tools provided by the manufacturers of wearable
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devices are not sophisticated enough for practical use. Although the informa-
tion obtained from all these sensor sources enables us to analyze egocentric
activities with different modalities, this brings out the need for efficient algo-
rithms that can effectively combine complementary information of sensors and
provide modularity to allow easy incorporation of additional sensors.

The fusion of modalities may be done at feature [11–13] or classifier level
[14, 15]. In feature level fusion, different types of features are combined to get
more discriminative features before the final classification. On the other hand,
classifier (or decision) level fusion techniques use each individual feature inde-
pendently in the classification process. The final decision is taken by combining
decisions for individual features. In our work, different sets of features are ex-
tracted using visual, audio and wearable sensor information and are fused using
two MKL techniques (MKBoost [16] and SimpleMKL [17]). SimpleMKL uses
decision level fusion in order to select the kernel weights with a weighted 2-
norm regularization that encourages sparse kernel combinations. On the other
hand, MKBoost combines a boosting approach with MKL learning that allows
performing feature selection and decision level fusion concurrently.

Related studies on EAR can also be grouped based on their sensor types:
using only visual information [4, 18, 19], using mobile and wearable sensor
networks [6, 20, 21] and combining visual information with other wearable
sensors [11, 22–24].

In this study, we propose an EAR system that fuses multi-modal features
obtained from optical, audio and wearable sensor data. The proposed frame-
work can adaptively weigh features and offer expandability with new features
and modalities. Our motivation and contributions for this study are high-
lighted below:

– The proposed framework uses audio together with video and wearable sen-
sors to recognize egocentric activities. To the best of our knowledge, this is
the first study that uses audio sensor in association with video and other
mobile sensors for this particular problem.

– We propose an adaptive framework that weighs the features from different
modalities and can adapt to different scenarios having different activity
classes by varying the relative importance of the features and selecting
appropriate kernel types.

– MKL provides an efficient fusion procedure that maximizes the recognition
performances even if one or more sensor information is unavailable.

– The results have shown that the proposed framework achieves on par or
better results with respect to the state-of-the-art methods.

The following section summarizes the works related with EAR which are
grouped with respect to their approaches to the problem and fusion/classification
strategies.
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2 Related Studies

Since the main concern of this study is to recognize activities by fusing multi-
modal features with the help of MKL, we mainly focused on the methods using
different modalities as input and using MKL for EAR tasks.

2.1 Egocentric Activity Recognition

Previous studies on EAR can be broadly categorized based on the sensor types
they use. Sensor modalities include video-based, mobile phone and wearable
sensors, social network sensors and wireless signals [10]. Vision-based activ-
ity recognition algorithms are mostly focused on the analyses of third-person
videos [25–28]. On the other hand, vision-based EAR can be grouped as object
and motion-based approaches [29]. In object-based methods, activity recogni-
tion is performed using the object(s) detected in videos (i.e., detection of cheese
and bread objects imply “making cheese sandwich” activity) [30] that makes
them dependent to the availability of objects in particular actions (hence can
only be used to detect actions involving particular objects) and becomes di-
rectly related to the object recognition performance which is vulnerable to
occlusions. Motion-based approaches make use of the assumption that differ-
ent types of activities such as running, walking, stair climbing, and writing
involve different body motions, and these motion patterns can be used for
recognizing activities [18, 31].

Other group of studies make use of wide range of different sensors embed-
ded on mobile and wearable devices in order to recognize the activities of the
users. Each sensor type provides a different aspect of information on activities.
For example, motion sensors can be used to monitor the users’ movements to
detect motion patterns of different activities such as walking, standing or run-
ning. Other types of sensors can also be used to obtain this motion pattern
such as accelerometer, gyroscope, magnetometer and inertial measurement
units (IMUs). In [1], different physical activities were distinguished in an unsu-
pervised way using smartphone accelerometers. Additionally, the information
taken from proximity and light sensors give clues whether the actor is in a
dark place or in a place where there is light [32]. Pedometer sensors or special-
ized wearable devices which count steps, monitor heart rate or pulse may also
give valuable information to understand the health conditions of users [33].
However, many studies in this field require extensive heuristic knowledge to
develop and select appropriate features for a given human activity recognition
(HAR) system [10].

There are a limited number of studies which deal with the problem of fus-
ing optical and wearable sensor information for EAR. In [22], a head mounted
camera and an eye tracker were used to recognize objects from videos that the
actor interacted with, which are then used to recognize the egocentric activi-
ties. Similarly, in [23], EAR was performed by a camera with a wearable eye
tracker to obtain gaze measurements in which the point of gaze is represented
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by a 2-D image point in each frame. Recently, a multi-modal solution was pre-
sented that combines new sensor features with dense trajectory features [24]
and was applied to their publicly available dataset (Multi-modal Egocentric
Activity Dataset) [11]. Additionally, in an early study, audio was considered
with optical information to investigate the recognition of user activities from
a wearable camera and a microphone [34]. However, there is a lack of generic
solution combining audio features with optical and wearable sensors to solve
the problem of EAR.

Deep learning based methods can be used as an alternative for various
subtasks in relation to activity recognition; such as feature extraction [35–37],
kernel fusion [38] and exploration of human-object interactions [39]. In a recent
study [37], auto-encoders were employed that take raw input data to extract
appearance and motion features, then reconstruct the input data through its
decoding procedure. After that, the learned appearance and motion features
by auto-encoders are fused to accomplish an egocentric activity representation
which can be fed into any supervised learning model. One of the prominent
studies [31] proposed a 3D CNN architecture for long-term activity recognition
in egocentric videos by generalizing the concept of temporal filtering [40] that
takes sparse optical flow volume as input. In another study [41], a twin stream
network architecture was used where one stream analyzes appearance and the
other stream analyzes motion information by explicitly training the network to
segment hands and localize objects to recognize egocentric activities. A recent
study [42] proposed a two-stream convolutional neural network architecture
that uses long-term fusion pooling operators to capture the temporal structure
of actions by leveraging a series of frame-wise features of both appearance and
motion in actions.

Deep learning based methods were also used for mobile and wearable sen-
sor data in time-series format. These types of works generally focus on feature
representation of sensor information to improve recognition accuracy [10]. For
that purpose, sensor streams are converted by using channel [20] or model [43]
approaches to fit into deep learning algorithms. In the literature, sensor-based
deep network solutions for HAR use generative (Restricted Boltzman Ma-
chines [44], Deep Autoencoders [45]), discriminative (Convolutional Neural
Networks [46], Recurrent Neural Networks [47]) or hybrid (Convolutional Re-
current Neural Networks [48]) models.

Even if deep learning based methods have satisfactory results, they are not
practical when new features need to be added since the network architecture
needs to be changed and retrained. Additionally, while deep learning based
methods offer transferability of knowledge across different tasks [49], they still
require further research to outperform traditional approaches in FPV [50].

2.2 Kernel Learning

Support vector machines (SVMs) is one of the most popular kernel-based tech-
niques in machine learning in which a single kernel is employed to transform
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input data usually into a high-dimensional space to perform classification or
regression. However, single kernel learning does not provide a mechanism for
effective use of multiple features. In standard SVM, one way to use multiple
features is feeding each feature independently to produce a classification re-
sult. This does not take the relative importance of the features into account
for classification and requires a decision level fusion mechanism. Another way
is to concatenate features and then use a single SVM for classification. Again,
this does not allow taking the relative importance of different features into
account as they are concatenated into a single vector. Therefore, an effective
classification algorithm should simultaneously take the varying importance of
features into account and allow using different kernels for different features.
One of the pioneering studies that takes into account the varying importance of
features was proposed in [4] in which each feature extracted locally or globally
was considered as a separate channel having equal weights. On the other hand,
it is possible to have an architecture using multi-kernel learning (MKL) [51]
which allows adaptive kernel selection and weighing. In this data-driven ap-
proach, multiple features are fused in an adaptive way using different types
of kernels. Even if the base kernels cannot perform well for all features, their
parameters and weights are optimized to get the best performance by using
complementary information coming from different sources. By this way, input
features are dynamically weighed at the training stage that allows to create
adaptive solutions for different first-person activity recognition problems. As
a result, feature selection is also performed automatically by the selection of
kernels and their weights during the training phase.

In this work, MKL is adapted to the problem of feature selection and de-
cision fusion in EAR. Different to the prior work in literature, the proposed
method is a multi-modal approach that uses audio and sensor features in ad-
dition to the visual features. Accordingly, different sources of information are
used to extract multi-modal features such as optical flow, intensity gradient,
video-based inertia, audio, accelerometer, gyroscope, linear acceleration, mag-
netic field and rotation vector. Adaptive weighing of features in training phase
according to their classification performances on weak classifiers makes the
framework robust against irrelevant data.

3 Proposed Framework

The proposed MKL-based multi-modal framework is shown in Figure 1. Firstly,
features are extracted from each raw sensor data. Then, each extracted feature
is used as an input to the MKL algorithm in which feature and base kernel (κ)
selection for classification are performed concurrently by adjusting the kernel
weights (d) adaptively. After training MKL, the best feature and kernel com-
binations are selected using base learners (f). Finally, EAR is performed using
the trained model for test videos with previously selected features and base
kernels.

In the subsequent section, the visual, audio and sensor features used in
this study are introduced. The single and multi-kernel learning strategies are
discussed in the following section.
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Fig. 1 The proposed solution for EAR using visual, audio and sensor features.

3.1 Feature Extraction

In this work, various types of features were extracted using visual, audio and
sensor information. Three important criteria were taken into consideration
when selecting the features. One of them is to satisfy the diversity of features
that may hold complementary information about egocentric activities. Sec-
ondly, since our main concern is not to propose a new feature, existing visual,
audio and sensor features were mostly preferred that had effectively been ap-
plied to EAR problem before. Finally, in order to compare the effectiveness
of the proposed learning strategy, similar set of features was selected with the
other state-of-the-art methods using the same datasets. The following section
explains the details of all visual, audio and sensor features used in this study.
The selection of feature sets for different datasets is discussed in Section 4.

3.1.1 Visual Features

Since it is known that effective encoding of ego-motion is crucial for EAR sys-
tems [18, 31], we preferred a set of visual features (GOFF, VIF, HOG, HOF
and MBH) that holds motion patterns globally and locally in temporal dimen-
sion. Grid Optical Flow-based Features (GOFF) include motion-based video
features extracted from spatio-temporal information specifically designed for
FPVs [18]. Virtual Inertia Features (VIF) [18] are used to approximate inertia
data (velocity and acceleration) to model egocentric activities. Log-Covariance
(Log-C) [52] features are dense video features derived from the optical flow data
as well as intensity gradient. Cuboid feature extracts local information using
sparse 3D space-time data [53]. Lastly, dense trajectory features are composed
of a set of visual features (Trajectory, Histogram of Oriented Gradients (HOG),
Histogram of Optical Flows (HOF) and Motion Boundary Histograms (MBH)
that propose an effective solution for motion-related vision tasks by detecting
motion patterns over densely tracked sample points using optical flow fields.
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3.1.1.1 Grid Optical Flow-based Features (GOFF)

GOFF are used to model the discriminative motion patterns within optical
flow information such as magnitude, direction and frequency [18]. To be able
to discriminate motion characteristics of activities, a set of features is defined
using the video frames divided into grids such as Motion Magnitude Histogram
Features (MMHF), Motion Direction Histogram Features (MDHF), Motion
Direction Histogram Standard-Deviation Feature (MDHSF), Fourier Trans-
form of Motion Direction Access Frame (FTMAF) and Fourier Transform of
Grid Motion Per-Frame (FTMPF).

MMHF is the histogram representation of grid optical flow magnitude val-
ues in which a non-uniform quantization process with 15 levels is used [18].
MDHF is another histogram representation of grid optical flow considering
its quantized direction values. MDHF was uniformly quantized into 36 levels
that correspond to 10o between each level. MDHSF represents the standard
deviation of each direction bin across the temporal dimension with a vector
of size 36. FTMAF is a frequency-based feature that measures the variation
for each direction bin along temporal dimension using decomposed frequency
bands. In contrast to MDHSF, FTMAF quantifies the detailed dynamics of
motion direction into 25 levels. Lastly, FTMPF measures the variation of grid
optical flow within a frame that also has 25 levels. As a result, GOFF has a
feature vector of size 137 after concatenating all of the sub-features.

3.1.1.2 Virtual Inertia Feature (VIF)

VIF provides virtual inertial information derived by using intensity centroid
across frames in a video without physically using inertial sensors [18]. Three
different sub-features were extracted in temporal dimension: zero-crossing (ZC),
4MEKS and frequency-domain feature (FF). ZC uses velocity and accelera-
tion values generated from intensity centroid for each frame and measures
zero-crossing rates of velocity and acceleration values. 4MEKS represents the
time-domain features in which minimum, maximum, median, energy, kurtosis,
mean and standard deviation values are calculated for each inertial signal. FF
feature holds low frequency components of the variations in velocity and ac-
celeration. In this study, the number of frequency components was selected as
10. Similar to GOFF, all sub-features of VIF were concatenated that makes
the resulting feature vector size as 106.

3.1.1.3 Log Covariance (Log-C)

Feature covariance matrix is an effective way of representing dense set of lo-
calized features. Bag of local features can be represented in a lower dimension
by the help of feature covariance matrices. In this study, feature covariance
matrix was determined by using optical flow and gradient vectors. For each
pixel of a video frame, a 12x12 dimensional covariance matrix was calculated
using intensity gradient of raw video sequences with respect to temporal di-
rection and first-order partial derivative of optical flow with respect to spatial
x and y directions, spatial divergence, vorticity, gradient tensor and the rate
of strain tensor [52].
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The dimension of the covariance matrix is only related to the dimension of
the feature vectors (i.e., 12x12 in this study). Covariance matrices lie on the
Riemannian manifold and matrix logarithm [54] were used to convert manifold
of covariance matrices into Euclidean. As a result, the feature vector size was
reduced to 78 due to its symmetry. After that, the extracted feature vector was
normalized by standard deviation and clustered using k-means for each video
segment. Finally, a descriptor is defined using Bag-of-Visual-Words (BoVW)
for each single activity video. The dictionary size was set to 300 which gave
the best single feature classification performance through a pre-defined set of
cluster sizes. However, principal component analysis (PCA) was applied to the
descriptor in order to reduce the dimension of sparse BoVW vectors except
the classifiers using histogram intersection kernels which will be explained in
the following section.

3.1.1.4 Cuboid

In addition to the global video features, a sparse 3D XYT space-time feature,
cuboid [53] is used as a local video feature. Cuboids have been used successfully
for activity recognition problem before [27]. Cuboid feature was developed as
an alternative to 2D interest point detectors to take temporal dimension into
account in addition to the spatial dimensions.

Before the feature extraction process, interest point detector was employed
to detect the corners in spatio-temporal dimensions by responding strongly
to the local areas containing motion and including spatio-temporal corners.
After that, a cuboid feature was extracted at each interest point that includes
brightness gradient and optical flow information [53]. Similar to Log-C, cuboid
was also configured to generate descriptors by using BoVW. The size of the
histogram was set to 500 through a set of cluster sizes by considering their
single feature classification performances. PCA was applied in order to reduce
the dimension except for histogram intersection kernels.

3.1.1.5 Dense Trajectory Features

Dense trajectories provide an effective solution for motion-related vision tasks
by detecting motion patterns over densely tracked sample points using optical
flow fields. They were also used to model ego-motion in egocentric videos [11]
that are composed of a set of visual features namely; trajectory, HOG, HOF
and MBH. Trajectory information is simply the concatenation of normalized
displacement vectors. HOG focuses on static appearance information while
HOF and MBH provide a measure of motion information in videos.

After extracting the dense trajectory descriptors as in [28], Fisher vector
was employed to encode these descriptors through an estimated Gaussian Mix-
ture Model (GMM). Similar to [11], the cluster size for GMM was set to 25 and
1% of descriptors were randomly sampled to estimate the GMM for building
the codebook. The dimensions of the features are reduced by half using PCA.
Finally, power and L2 normalization were performed on Fisher vectors.
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3.1.2 Audio Features

In order to fuse video, audio and sensor modalities using the SVM and MKL-
based frameworks, an utterance of audio recording of an activity needs to be
mapped into a vector space. To do so, a commonly used methodology in the
field of speaker recognition from speech [55, 56] was employed in this study.

The first step is to split an audio signal into a sequence of frames and
represent each frame using a spectrum-based feature vector. For that purpose,
Mel-frequency cepstral coefficients (MFCCs) [57] were used as frame features.
The discrete Fourier transform was applied on each frame and the resulting
magnitude spectrum was passed to a bank of Mel-spaced triangular filters and
then discrete cosine transform was applied, providing MFCCs. We explored a
range of values for the parameters, with a final setup as follows: frame length of
40 ms, 10 ms shift between adjacent frames and 23 filter-bank channels. Only
the first 12 MFCCs were used. The frame energy was added as the 13th feature.
These features were appended with their temporal derivatives, referred as delta
and delta-delta coefficients, calculated as in [58], using the span of +3 and +2
frames, respectively. This resulted in a 39 dimensional feature representation
of each signal frame.

The distribution of these feature vectors was modeled using the Gaus-
sian mixture model (GMM), with diagonal covariance matrices. First, a class-
independent model, referred to as the Universal Background Model (UBM),
was estimated using all of the training data from all classes. A class-dependent
GMM was then obtained by performing maximum a-posteriori adaptation [59]
of the component mean vectors of the UBM, using class-specific training data.
The mean vectors of the components of the resulting class-dependent GMM
are then concatenated to form a ‘supervector’ [60]. A supervector is obtained
for each utterance of each class, resulting in a set of supervectors per class.
Supervectors are then used as a vector representation of each class for activity
classification. It was observed that using different numbers of GMM compo-
nents ranging from 16 to 64 gave similar performances. Hence, the number of
components is set to 16 throughout the experiments. Lastly, dimensionality
reduction of the supervectors was tested using the PCA. However, applying
PCA to the supervectors had no significant effect on the performance.

3.1.3 Sensor Features

The wearable sensors data (accelerometer, gravity, gyroscope, linear accel-
eration, magnetic field and rotation vector) contain time-series information
having 19 dimensions. In this study, each dimension of sensor information was
considered as a one-dimensional signal and converted into trajectories by em-
ploying sliding windows. After generating many trajectories for sensor data,
Fisher encoding was performed similar to dense trajectory features. The same
feature extraction procedure and parameter settings were followed as in [11].
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3.2 Activity Recognition

Support vector machines (SVMs) was chosen as the baseline method that rep-
resents single kernel learning and it was compared with two well-known MKL
algorithms: MKBoost and SimpleMKL. MKBoost adopts boosting to solve a
variant of MKL problem, which avoids solving the complicated optimization
tasks [16] while SimpleMKL proved to be an efficient and rapid converging
algorithm compared to other MKL optimization algorithms [61]. In the fol-
lowing section, particulars of these methods in relation to the EAR problem
are explained briefly.

3.2.1 Single Kernel Learning

SVM is a kernel-based method and use of kernels allows operating in higher
dimensional feature spaces than the original. In this work, SVM was used for
single kernel learning with the features formed by concatenating all individual
features. The most widely used kernel types for SVMs are linear, polynomial
and radial basis functions (RBFs). After making numerous experiments, linear
and polynomial kernel (3rd order) gave the best recognition performances for
two pre-defined feature sets used for the selected egocentric datasets which are
defined in Section 4.

The linear and polynomial kernels used in this study are defined as:

κ(xi, xj) = 〈xi, xj〉

κ(xi, xj) = (〈xi, xj〉+ l)p
(1)

where κ represents kernel function, x’s are the features, p is the maximal order
of monomials making up the new feature space and l is a bias towards lower
order monomial. The intuition behind this kernel definition is that it is often
useful to construct new features as products of original features [62].

One of the feature set includes histogram-based features due to the use
of BoVW model for Log-C and cuboid. Therefore, in addition to polynomial
kernels, a modified version of histogram intersection kernel (DC-Int) [5] was
chosen that was specifically designed for histogram-based features:

κ(xi, xj) = exp(−
C∑
c=1

D(Hc
i , H

c
j )) (2)

where C is the number of channels, Hc
i and Hc

j are W dimensional histograms

of cth channel for ith and jth videos and D(Hc
i , H

c
j ) is the histogram distance

defined as:

D(Hc
i , H

c
j ) = 1− (

W∑
m=1

min(him, hjm)/

W∑
m=1

max(him, hjm)) (3)

where him and hjm are the mth histogram bins identified for ith and jth videos,
respectively.
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3.2.2 Multi-Kernel Learning

SVM has been proven to be an effective method in classification and regression
problems [63] in which data representation is implicitly chosen through the
used kernels κ(x, xi). MKL converts the single kernel solution to the weighted
sums of multiple kernels as in the form below:

N∑
i=1

α∗i κ(x, xi) + b (4)

where N is the number of samples, α∗i and b are coefficients to be learned
from examples, while κ(., .) is a given positive definite kernel associated with
a reproducing kernel Hilbert space. It was shown that using multiple kernels
(κk) can enhance the interpretability of the decision function and improve
performance [64],

κ(x, xi) =

K∑
k=1

dkκk(x, xi) (5)

where K is the number of kernels, dk ≥ 0 and
∑K
k=1 dk = 1.

3.2.2.1 Multiple Kernel Boosting (MKBoost)

MKBoost employs a boosting framework in order to learn an ensemble of mul-
tiple base kernel classifiers, each of which is learned from a single kernel. The
combination weights for both the kernels and classifiers can be efficiently deter-
mined through the learning process of boosting [16] using a similar procedure
to Adaboost [65]. In this approach, some kernel classifiers (κ) with multiple
kernels (K) through a series of boosting trials t = 1, ..., T , where T denotes
the total number of boosting trials, are repeatedly learned using a subset of
M examples (r ∗M where 0 < r < 1).

The original procedure of MKBoost algorithm was designed for binary
classification problem. However, it has been adapted to multi-class problems
in our framework. For that purpose, multi-class classifiers are used to perform
classification task at each trial and samples are boosted within each class
in order to preserve the balance between the classes. Additionally, the feature
selection routine has been modified by taking all feature combinations (P ) into
consideration at each trial (i.e., 7 combinations for 3 features). The pseudo-
code of this procedure is given in Algorithm 1.

At each boosting trial, distribution of weights χt, which indicates the rel-
ative importance of the training examples for learning, is updated. Addition-
ally, the weights of the incorrectly classified examples are increased while the
weights of those correctly classified examples are decreased in order to focus
on those examples that are hard to be successfully classified.

Lastly, the selected kernels and the feature combinations with their corre-
sponding weights are used at the test phase. For each test sample, the weighted
sum of the kernel predictions are used for the final prediction of test samples.



Multi-modal Egocentric Activity Recognition using Multi-Kernel Learning 13

Algorithm 1 MKBoost
Input: (x, y), κ, T

Output: ŷ

1: training set (Strain): (x1, y1), ..., (xM , yM )

2: test set (Stest): (xM+1, yM+1), ..., (xN , yN )

3: labels: y = 1, ..., L

4: feature combinations: p = 1, ..., P

5: kernel pool: κk(., .) : XxX → R where k = 1, ..., K

6: Training Phase

7: for t← 1 to T do

8: Select r ∗M sample indices (it) using distribution χt where 0 < r < 1

9: for p← 1 to P do

10: Select pth feature combination for training: Sptrain[it]

11: for k ← 1 to K do

12: Train weak classifier (κk) with Sptrain(it)

13: Compute training error over all samples (Sptrain): ∈kp= 1
M

∑M
m=1 fk(xpm) 6= yi

14: Select the best classifier for p
th

feature combination :∈p= argmin
k
∈kp

15: Select the best classifier (ft) and feature combination (pt) for trial :∈t= argmin
p
∈p

16: Set the weight for trial: Wt = 1
2 ln(

1−∈t
∈t

)

17: Update sample distribution: χt+1(i) = χt(i)

e
−Wt if κt(xi) = yi

eWt if κt(xi) 6= yi
for i = 1, ...,M

18: χt+1 =
χt+1
Zt

where Zt is a normalization factor to make χt+1 a distribution

19: Test Phase

20: for i←M + 1 to N do

21: Ŷc ← 0 where c = 1, ..., C

22: for t← 1 to T do

23: Predict the label for trial: ct = ft(S
pt
test[i])

24: Ŷ [ct]← Ŷ [ct] +Wt ∗ ct
25: Predict the final label: ŷi = argmaxc Ŷc

3.2.2.2 SimpleMKL

SimpleMKL [17] offers a solution to MKL by using a weighted l2 normalization.
The proposed solution is based on a gradient descent wrapping standard SVM
solver that determines the combination of kernels [40].

As it was stated in [51], SimpleMKL consists of two main steps: solving a
canonical SVM optimization problem with the given kernel weights (d) and
updating kernel weights using the following gradient calculated with another
parameter (γ) obtained in the first step. Additionally, the gradient update
procedure must consider the non-negativity and normalization properties of
the kernel weights [51]. In this algorithm, K is the number of kernels, κ is the
base kernel, dk is the kernel weights, J represents the differentiable objective
function and ∇D shows the gradient descent directions for each step. The
pseudo-code of SimpleMKL is given in Algorithm 2.
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Algorithm 2 SimpleMKL
Input: dk

Output: κk

1: dk ← 1
K for i=1,...,K

2: while stopping criterion not met do

3: Compute J(d) by using an SVM solver with κ =
∑
k dkκk

4: Compute ∂J
∂dk

for k = 1, ..., K and descent direction ∇D
5: Set µ = argmax(dk), J† = 0, d† = 0, ∇†D = ∇D
6: while J† < J(d) do

7: Set kernel weights and gradient descent: d = d†, ∇D = ∇†D
8: v = arg min

(k|∇kD<0)

(−
dk

∇kD
), γmax = −

dv

∇vD

9: Update parameters: d† = d+ γmax∇D, ∇µ
†
D = ∇µD −∇

v
D, ∇v

†
D = 0

10: Compute J† by using an SVM solver with κ =
∑
k d
†
kκk

11: Linear search along D for γ ∈ [0, γmax] (calls an SVM solver for each trial value)

12: d← d+ γ∇D

4 Experimental Results

In this section, experimental results of the proposed solution are presented
after introducing the datasets used in this study, the strategy of feature and
kernel selection and the metrics to evaluate the performance of activity recog-
nition.

4.1 Datasets

The performance of the proposed framework was evaluated using three egocen-
tric datasets: JPL First-Person Interaction [4], DogCentric Activity Dataset
(DogC) [5], and Multi-modal Egocentric Activity Dataset (MEAD) [6]. We
have taken the diversity of activities into consideration when selecting the
datasets. For instance, the videos in JPL were taken indoor with a passive
actor while DogC includes videos taken outdoor with a first-person animal
viewpoint. On the other hand, MEAD includes videos taken in different places
(indoor, outdoor) and at different times of the day with human actors.

JPL [4] is composed of first-person videos of interaction-level activities by
8 actors. It contains four positive (i.e., friendly) interactions with the observer
(shaking hand, hugging, pet, waving hand), one neutral interaction (pointing),
and two negative (i.e., hostile) interactions (punching, throwing objects) for
each actor. There are a total of 84 videos with 320x240 resolution at 30fps.
The clips have variable lengths and the mean video length for JPL is 7.77
seconds.

DogC [5] includes 10 different types of activities taken from the viewpoint
of the dogs. Video resolutions are 320x240 at 24fps or 48fps and mean clip
length is 4.12 seconds. Playing with a ball, drinking, feeding, looking left/right,
petting and shaking are some of the activity types. Unlike the other datasets,
the number of videos for each activity is different (i.e., feed and shake have 25
videos while playing with a ball has only 14 videos) which makes it unbalanced
with respect to its class samples.
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MEAD [6] is different from other egocentric activity datasets as it has
multi-modal sensor data (optic, audio, accelerometer, gravity, gyroscope, linear
acceleration, magnetic field and rotation vector). It has 20 distinct life-logging
activities grouped into four top level types: ambulation, daily activities, office
work and exercise. Each category has 10 sequences and each clip is exactly 15
seconds. There is a total of 200 videos with 1280x720 resolution at 29.9fps.
Audio was sampled at 48 kHz and 16 bits per sample. As no significant content
was observed in higher frequencies, the audio was down-sampled to 24 kHz
before the feature extraction.

4.2 Feature and Kernel Selection

The feature sets were selected based on the available sensor information in
datasets, the diversity of features (i.e., GOFF holds the global motion in frames
while VIF presents video-based inertia information) and the features used in
the other state-of-the-art methods. For JPL and DogC, only visual features
were used since they only have visual sensor information. Additionally, GOFF
and VIF were firstly used in [18] with JPL, cuboid was proposed in [4] for
JPL and, cuboid and Log-C were used in [19] for both JPL and DogC. As a
result, the feature set was selected as a combination of GOFF, VIF, Log-C
and cuboid to show that the proposed method can effectively combine these
visual features. On the other hand, MEAD contains visual, audio and wearable
sensor information. In [6], dense trajectory and sensor features were extracted
from MEAD, these features are also selected to be used in this work. However,
unlike in [6], GMM-based supervector audio features were extracted, obtained
by modelling MFCCs to prove that it is possible to add another modality to
the proposed MKL-based framework and improve the overall recognition per-
formance. As a result, the proposed framework was evaluated in two settings:
one of which uses visual features (GOFF, Log-C, cuboid) and virtual inertia
(VIF) extracted from JPL and DogC, and the other employs visual (dense
trajectory), audio and sensor (FVS) features extracted from MEAD.

The kernel types used for single kernel learning differ with respect to the
selected feature set. For instance, polynomial kernel (3rd order) was selected
for the first experimental setting including GOFF, VIF, Log-C and cuboid
while linear kernel was chosen for the second feature set that is composed
of FVS, audio and dense trajectory features. The selection of different kernel
types is directly related to the characteristics of the features. GOFF, VIF, Log-
C and cuboid hold the information in a compact way that generally requires
non-linear decision boundaries. However, FVS, audio and dense trajectory
features were encoded with Fisher vectors which include sparse vectors that
can generally be separated with linear kernels.

In our experiments, each video segment was represented with one feature
vector. Therefore, the number of samples is equal to the number of videos
in datasets. Training and test sets were randomly composed at each iteration
and the final evaluation results were obtained by taking the average of 100
test iterations. For JPL, each activity has 9 training and 3 test videos while
MEAD has 8 training and 2 test video samples. Unlike JPL and MEAD, DogC
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has a different number of video segments for each activity, approximately 75%
of which are selected randomly for training.

A pre-defined kernel pool should be defined before running the experiments
of MKL algorithms. However, searching for the best kernel set for each feature
combinations is time consuming. Thus, only one set of basis kernels was se-
lected for each dataset and all the experiments for that dataset were performed
with the same basis kernel pool.

4.3 Evaluation Metrics

In order to evaluate the results, Precision (P ), Recall (R), Accuracy (A) and
F1-score (F ) metrics by considering True Positive (TP ), True Negative (TN),
False Positive (FP ) and False Negative (FN) scores were used as shown in
(6).

P =
TP

TP + FP
R =

TP

TP + FN

A =
TP + TN

TP + TN + FP + FN
F = 2

P ∗R
P +R

(6)

Kappa statistics was selected as another performance measurement metric
which is known to be a discerning statistical tool for assessing the classifi-
cation accuracy of different classifiers that generally gives better interclass
discrimination than the overall accuracy [66]. Kappa statistics is calculated
by using the marginal probabilities of ground truth and predicts labels with
their joint probabilities that correspond to the values of confusion matrix. The
formulation of Kappa statistics is given below:

p0 =

L∑
i=1

pii pe =

L∑
i=1

pi ∗ pî κ̂ =
p0 − pe
1− pe

(7)

where L is the number of classes, pi is the probability of ith class according to
the ground truth, pî is the probability of ith class according to the prediction,
p0 is the observed accuracy and pe is the sum of the marginal proportions.

Implementation of the proposed framework was mainly realized using MAT-
LAB 2018b while OpenCV 3.2.0 was employed for optical flow estimation. Ad-
ditionally, the following third-party toolboxes were used: LibSVM 0.9.20 [67],
the toolbox for cuboid extraction developed by Dollar et al. [53] and Sim-
pleMKL toolbox [51]. LibSVM and SimpleMKL toolbox have been modified
to allow using histogram intersection kernels.

The test procedure was the same for all datasets. Firstly, the performances
of individual features were analyzed for each dataset. Then, the combinations
of features were tested to observe the effects of feature types on the recognition
scores. The results were tabulated for each dataset individually. Finally, the
performance of the proposed method was evaluated by using all the features
and compared with the performance of the-state-of-art methods.
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4.4 Results for JPL Dataset

Average F1-scores for single features and their combinations for JPL dataset
are shown in Table 1. According to the results, SimpleMKL performs better
for optical flow-based features while histogram intersection kernel has better
results for the histogram-based features (Log-C and cuboid). Another signifi-
cant point is the inferior performance of the local visual feature relative to the
global features.

Table 1 F1-Score of Single Features and Feature Combinations for JPL

SVM-Poly SVM-Hist MKBoost SimpleMKL

Single Features

Global GOFF 0.91 0.91 0.92 0.92

Global VIF 0.85 0.86 0.86 0.87

Global Log-C 0.80 0.84 0.82 0.82

Local Cuboid 0.69 0.71 0.70 0.70

Combination of Global Features

GOFF + VIF 0.92 0.92 0.93 0.93

GOFF + Log-C 0.90 0.87 0.93 0.92

VIF + Log-C 0.84 0.86 0.85 0.85

GOFF + VIF + Log-C 0.91 0.89 0.93 0.93

Combination of Global and Local Features

Global + Local 0.92 0.92 0.93 0.93

The videos in JPL were taken with a passive actor and video segments are
not cluttered with foreground objects (only one or two persons appear in the
videos). There are two typical motion characteristics in videos, one of which is
global camera motion (i.e., punching, hugging) and the other is local motion
appearing only in one region within FOV (i.e., throwing objects, pointing)
while the other regions do not contain any motion information. These motion
characteristics work in favor of the global features as can be seen from the
results.

When a number of global features are used together, the combinations in-
cluding GOFF consistently got the highest scores. This is expected since GOFF
is the most discriminative feature according to the single feature performances.
On the other hand, when all features (global and local) are used, MKBoost
and SimpleMKL algorithms perform better than SVM-based classifiers.

The resulting confusion matrices for JPL activities using the selected classi-
fiers are shown in Figure 2. According to these results, pet and point activities
have the least recognition performances compared to other activities. Addition-
ally, MKBoost achieves a more balanced recognition performance that makes
it more reliable compared to the others.
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Fig. 2 Confusion matrices of SVM, Histogram Intersection, MKBoost and SimpleMKL
learning methods for JPL.

4.5 Results for DogC Dataset

DogC is an unbalanced dataset that was taken outdoor with the viewpoints
of animals. Additionally, ego-motion is much higher compared to JPL and
MEAD that makes it the most challenging dataset. Table 2 shows the average
F1-scores of both single feature performances and their combinations for DogC
dataset.

Unlike JPL, the performance gap between global and local visual features
is relatively small which implies that the local motion characteristics are also
important in addition to the global motion. Additionally, MKBoost and Sim-
pleMKL have very similar scores for global feature combinations. However,
SimpleMKL achieves the best results for the combination of global and local
features.

The resulting confusion matrices of DogC for different learning methods
are shown in Figure 3. “Looking left” and “looking right” activities have the
lowest classification accuracies since they are confused with each other. These
two activities have very similar characteristics apart from having different
motion directions.
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Fig. 3 Confusion matrices of SVM, Histogram Intersection, MKBoost and SimpleMKL
learning methods for DogC.

4.6 Results for MEAD Dataset

MEAD has a relatively higher number of egocentric activity classes and is
more challenging in that sense. Additionally, the videos in this dataset exhibit
a higher variation due to being captured at different times of the day and
different locations (indoor, outdoor). In addition, multi-modal sensor infor-
mation is available for MEAD including visual, audio and wearable sensors.

Table 2 F1-Score of Single Features and Feature Combinations for DogC

SVM-Poly SVM-Hist MKBoost SimpleMKL

Single Features

Global GOFF 0.56 0.59 0.59 0.61

Global VIF 0.42 0.46 0.47 0.47

Global Log-C 0.47 0.51 0.53 0.49

Local Cuboid 0.43 0.36 0.41 0.41

Combination of Global Features

GOFF + VIF 0.60 0.61 0.63 0.63

GOFF + Log-C 0.59 0.63 0.62 0.63

VIF + Log-C 0.53 0.52 0.56 0.55

GOFF + VIF + Log-C 0.62 0.63 0.63 0.63

Combination of Global and Local Features

Global + Local 0.64 0.62 0.63 0.65
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Therefore, the combination of features was selected with respect to their main
modalities to report the results (video, audio and sensor).

Table 3 shows the experimental results. Especially, dense trajectory fea-
tures had promising results for single feature experiments which proves their
ability to discriminate activities by modeling the ego-motions in videos. Single
feature performances of classifiers are very close to each other. Thus, it is not
possible to have a conclusive judgement on the relative performances of the
classifiers based on single feature performances.

Table 3 F1-Score of Single Features and Feature Combinations for MEAD

SVM-Linear MKBoost SimpleMKL

Single Features

Video Trajectory 0.63 0.64 0.65

Video HOG 0.72 0.72 0.72

Video HOF 0.82 0.82 0.82

Video MBH 0.72 0.72 0.73

Sensor FVS 0.64 0.63 0.62

Audio Audio 0.44 0.43 0.46

Combination of Modalities

Sensor + Video 0.83 0.85 0.86

Video + Audio 0.84 0.85 0.86

Sensor + Audio 0.63 0.67 0.69

Combination of All Modalities

Video + Sensor + Audio 0.84 0.86 0.87

Another significant point is that adding new modalities generally increases
the final recognition performances except when sensor and audio combination
were used with linear SVM. For example, the best single feature performances
of sensor and audio are 64% and 46%, respectively. When these two features
are combined with MKL, their performance score increased up to 69% which
also shows that sensor and audio modalities contain complementary infor-
mation for activities. In general, MKL-based learning algorithms performed
better when different modalities were combined. The difference between the
maximum accuracy of single features and the accuracy of all feature combi-
nations is more remarkable for MEAD (from 82% to 87%) compared to JPL
(from 92% to 93%). That means the added features (especially audio) are
more complementary for MEAD when used in combination with the other
features. Additionally, when sensor features are combined with audio feature,
SimpleMKL outperforms the other classifiers because of better weighting of
multi-modal features.
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The resulting confusion matrices for SVM, MKBoost and SimpleMKL are
shown in Figure 4. The recognition performance is less when the motion level
of the activity is low (i.e., reading, organizing files or texting) while the scores
get better for the activities having higher ego-motion (i.e., walking, doing
push-ups, or walking downstairs).

4.7 Comparative Results

In this section, the results are compared with the state-of-the-art methods
(Table 4) with respect to the average accuracy (A), precision (P), recall (R),
Kappa value (K) and F1-scores (F). Our results were produced by using all
modalities: (a) global and local features for JPL and DogC, (b) video, audio
and sensor features for MEAD.

Table 4 Comparative Performances of the Proposed Method

Dataset Method A P R κ F

JPL

Ryoo & Matthies [4] 0.90 - - - -

Abebe et al. [18] - 0.87 0.85 - 0.86

Ozkan et al. [19] 0.87 - - - -

Sudhakaran & Oswald [35] 0.91 - - - -

SVM 0.91 0.92 0.91 0.89 0.91

DC-Int 0.87 0.90 0.87 0.87 0.89

MKBoost 0.92 0.94 0.92 0.91 0.93

SimpleMKL 0.92 0.93 0.92 0.91 0.93

DogC

Abebe et al. [18] - 0.62 0.59 - 0.61

Iwashita et al. [5] 0.61 - - - -

Ozkan et al. [19] 0.65 - - - -

SVM 0.63 0.65 0.63 0.58 0.64

DC-Int 0.60 0.64 0.60 0.59 0.62

MKBoost 0.61 0.64 0.63 0.57 0.63

SimpleMKL 0.64 0.66 0.65 0.61 0.65

MEAD

SVM (Song et al. [11]) 0.84 0.86 0.84 0.84 0.85

MKBoost 0.86 0.85 0.86 0.85 0.86

SimpleMKL 0.87 0.88 0.87 0.86 0.87

The results are compared with four other works [4, 18, 19, 35] for JPL.
In [18], GOFF and VIF features were used with SVM and kNN classifiers.
In [4], a structural learning approach was used with HOF, Log-C and cuboid
features while an MKL-based solution was proposed in an earlier work [19]
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Fig. 4 Confusion matrices of linear SVM, MKBoost and SimpleMKL algorithms for MEAD.
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using the same features. In [35], a convolutional long-short term memory
(LSTM) was used to perform feature encoding with convolutional neural net-
works (CNN) while holding long term temporal changes. The results show that
SimpleMKL and MKBoost achieve similar performances and get the highest
scores. Additionally, extending the feature set for the proposed MKL-based
solution improves the overall accuracy when compared with the results in [19]
in which a subset of the features used in this study.

For DogC, we took into consideration the results of [5, 18, 19] in which
DogC was also tested. The method proposed in [5] used global (dense opti-
cal flow and local binary pattern) and local (normalized pixel values, HOG
and HOF) motion descriptors and combined them with a modified histogram
intersection kernel.

Finally, the results of MEAD were compared with [11] in which the same
video and sensor features were used. Different to [11], audio feature was used as
another modality with MKL. It should be emphasized that adding only audio
without changing the learning mechanism used as in [11] improved the recog-
nition accuracy from 83% to 84%. Another significant result was obtained by
changing linear SVM with MKL which also increased the recognition accuracy
from 84% to 87%.

5 Discussion

In order to understand the adaptive nature of MKL methods, a statistical
analysis was performed using base kernel and feature selections for MKBoost.
For that purpose, the selected base kernels and features were recorded at each
trial and the advantages and disadvantages of the proposed framework were
discussed based on these experiments.

5.1 Base Kernel Selection

Base kernel selection is one of the important phases in training. In this section,
the statistical results are given for base kernel type selection after repeating the
tests for 100 trials (Figure 5). According to the results, linear kernel was the
most preferred kernel for all the datasets. However, selection characteristics
are different for all three datasets. For example, following the linear kernel,
polynomial kernel was the most dominant type for JPL while RBF, hist-int
and DC-hist were selected much less frequently. RBF, hist-int and poly were
preferred with a similar rate for DogC for which DC-Hist was the least favored
kernel. For the MEAD dataset, the algorithm predominantly selected linear
kernel. While RBF and polynomial kernels are also selected, they were much
less favored. This shows that the features extracted from the MEAD dataset
were mostly linearly separable. A more diverse range of base kernel selection
for DogC indicates that the features used for it consist of mostly non-linearly
separable samples. JPL dataset features proved to be more mixed in terms of
their linear separability.
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Fig. 5 The number of selected base kernels for each dataset.

5.2 Feature Selection

Feature selection is another important phase of training. Frequency of se-
lection for different features is shown in Figure 6. At each trial, a specific
feature is assumed to be selected if it is in the selected feature combination
set. GOFF, VIF, Log-C and cuboid features were provided for JPL and DogC
while the features for the main modalities (video, sensor, audio) are grouped
together for the MEAD dataset for readability. For example, GOFF is as-
sumed to be selected when any feature combination that includes GOFF (e.g.,
GOFF+VIF+Log-C) is selected. The results show that the optical flow-based
feature, GOFF, is the most discriminative one for JPL. GOFF is the second
most selected feature for DogC after cuboid. Video features are the most pre-
ferred ones compared to sensor and audio for MEAD.

On the other hand, the selection rates of features unveil some information
about the characteristics of egocentric datasets. The features in the order of
their selection frequency for different datasets can be listed as: JPL: GOFF >
VIF > Log-C > Cuboid, DogC: Cuboid > GOFF > VIF > Log-C; MEAD:
Video > Sensor > Audio.

The difference in ordering for datasets proves that MKBoost is able to
adapt to the input data with different characteristics. While the global features
usually gave the best results for JPL, the local feature was more important
than the global features for DogC due to the more hectic nature of dog motions.

A more detailed analysis for kernel and feature selection were also per-
formed to extract which feature combinations are mostly used with which base
kernels. Therefore, the histograms of the selected base kernels were extracted
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Fig. 6 The number of selected features for each dataset.

for each feature combination as shown in Figure 7. The feature combination
IDs and their feature compositions are given in Figure 7-(d). The related fea-
ture combination includes the feature if it is marked as yellow. The feature
combination IDs are the same for JPL and DogC. However, they are different
for MEAD since it uses different set of features.

Figure 7-(a) shows that GOFF, VIF and GOFF+VIF (Feature IDs 1, 2
and 5) were the most dominantly selected features for JPL. For DogC, cuboid
and GOFF (Feature IDs 4 and 1) were selected mostly as a single feature
and cuboid was included in the most selected feature combinations according
to Figure 7-(b). On the other hand, dense trajectory features were selected
nearly in all feature combinations for MEAD (Figure 7-(c)). It is interesting
to note that although audio has a considerable selection rate (Figure 6) for
MEAD, it is generally selected in combination with other features rather than
individually, suggesting that it provides complementary information to the
other modalities.

5.3 Analysis of the Overall Framework

In this study, three types of sensor data (video, audio and wearable sensors)
were used with an MKL-based framework to recognize egocentric activities.
The results show that the proposed solution is effective in discriminating ego-
centric activities as well as providing a modular framework which can be ex-
tended with additional sensors. New features from these modalities are simply
new channels of information to be adaptively learned by the base learners.
The weight of each feature is assigned with respect to its contribution to the
classification performance. By this way, feature selection and model training
are done concurrently.
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(a) (b)

(c) (d)

Fig. 7 The number of selected feature combinations of JPL (a), DogC (b) and MEAD (c)
for the given feature composition color codes (d) in which feature names are abbreviated
as follows: GOFF:G, VIF:V , Log-C:L, Cuboid:C, Audio:A, Dense Trajectory Features:T ,
Sensor Features:S

The performance results show that the proposed framework consistently
produces better performance compared to the state-of-the-art methods. Multi-
ple kernel learning is expected to yield mostly better results than single kernel
learning. However, in some cases, single kernel solutions have the best perfor-
mance results such as cuboid for DogC and FVS for MEAD. This is because
using the same set for all feature combinations does not always give the opti-
mal solution. Our experiments have confirmed that when the kernel pool for
MKL is changed accordingly, the performance results are on par with the single
kernel method. Additionally, it was observed that MKBoost did not perform
as well as SimpleMKL for DogC and MEAD. Boosting technique needs suffi-
cient number of labelled samples to get good classification performance [68];
whereas the number of samples used in this work is limited by the number of
videos in datasets. As DogC and MEAD contain relatively fewer videos, MK-
Boost performance remains lower for these datasets. MKL methods (especially
SimpleMKL) outperforms the others when the features are combined, which
makes MKL a prominent method for the fusion of features.
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Table 5 Time Complexity Analysis of the Proposed Methods

Training Time per Video Segment

(ms)

Test Time per Video Segment

(ms)

Single

Kernel
MKBoost SimpleMKL

Single

Kernel
MKBoost SimpleMKL

Single Channel 6.6 14946.7 79.5 4.2 207.4 14.6

2 Channels 6.8 30320.6 182.7 4.3 254.3 18.9

3 Channels 7.2 71371.8 189.1 4.5 255.3 16.6

Another important point is that the use of multiple modalities (i.e., video
and audio) improves the activity recognition performance implying that the
multi-modal features coming from different domains have complementary in-
formation. Moreover, it is observed that MKL is a more effective solution
when using multi-modal features compared to the other state-of-the-art meth-
ods. For instance, combining sensor features with audio for MEAD provides a
significant improvement with MKL compared to single kernel learning.

Unlike single kernel learning and MKBoost, it is hard to formulate the
time complexity of SimpleMKL that runs an optimization algorithm to deter-
mine the kernel weights. Because the feature extraction process is the same
for all learning strategies, the time complexity analysis for the training and
test was performed among classifiers. The average time to process video seg-
ments for MEAD is shown in Table 5. In order to assess the variation in the
execution times with respect to the number of channels, tests were conducted
with one channel (video), two channels (video+sensor) and three channels
(video+sensor+audio), respectively. PC configuration for the experiments was
Intel R© CoreTM i5-6200U @ 2.30GHz with 8GB RAM.

Table 5 shows that single kernel solution is the fastest for both the training
and test while MKBoost is the slowest. It is known that the computational
cost of SVMs is related to the final number of support vectors and modern
SVM solvers come close to a scaling law which indicates the computational
cost of solving the SVM problem has both a quadratic and a cubic component
growing at least like n2 when C is small and n3 when C gets large [69]. On
the other hand, MKBoost consists of multiple kernel solvers whose numbers
are directly proportional to the number of feature combinations (F ), the trial
numbers (T ) and the base kernel pool size (Kp). Therefore, the timing per-
formance of MKBoost is consistent with the theoretical calculation since its
training time is equal to F ∗ T ∗Kp ∗ Tsingle where Tsingle is the training time
needed for single kernel. Unlike MKBoost, SimpleMKL uses the previous SVM
solution that provides a good guess for the current SVM training. Thus, the
computation time per SVM training is considerably less. According to these
results, albeit slower than a single kernel method, SimpleMKL can be pre-
ferred as an alternative learning algorithm for sensor data streams considering
its fast convergence and efficient learning performance.

Additionally, the proposed solution has promising results on three differ-
ent egocentric datasets having varying numbers of activities ranging from 7
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to 20, showing the scalability of the proposed framework. Even though MKL
approaches got satisfactory learning performances for EAR problem, they re-
quire configuring a pre-defined kernel pool. If the basis kernels are not selected
properly, MKL approaches may not be able to converge to the optimal solu-
tion.

6 Conclusion

In this work, we proposed a new framework for EAR based on multi-modal
features combined with multi-kernel learning classification. Our experiments
have shown that combining different modalities improves the recognition per-
formance. The proposed solution has been tested on three different egocentric
datasets and achieved better performances compared to state-of-the-art meth-
ods. This study has shown that using multimodal features with MKL is an
effective method for EAR.

On the other hand, it is obvious that the variation of the selected feature
and kernel sets for MKL is directly related with the characteristics of egocentric
datasets. This observation implies that it is not possible to define a common
set of best features and kernels for all datasets since the recording conditions
of videos (place, time, actors, etc.), available sensor information (visual, audio,
sensor, etc.) and the dynamics of egocentric actions vary for different datasets.
Hence, an adaptive method should be proposed that dynamically learns the
changing conditions of datasets such as the one proposed in this paper to
provide a generic solution for the recognition of egocentric activities.

Combining visual information with audio or wearable sensors still requires
further research for EAR. Contrary to third-person activity recognition, ego-
centric activity datasets may potentially contain more information about ac-
tivities by the help of a variety of sensors directly recording the event. Thus,
it is necessary to develop new frameworks that can receive features from dif-
ferent domains and combine them in an efficient and practical way to be able
to recognize the activities of users.

The proposed framework adaptively fuses the features from different modal-
ities, however it depends on handcrafted features. On the other hand, there
are increasing number of studies in the literature proposing end-to-end so-
lutions with deep learning techniques using visual [31, 41, 42] and wearable
sensor [70, 71] information. Developing a generic end-to-end solution that also
automatically learns the features inherently coming from different modalities
is an open research challenge for the researchers.
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48. Guan, Y., Plötz, T.: Ensembles of deep lstm learners for activity recognition using
wearables. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 1(2), 11 (2017)

49. Abebe, G., Cavallaro, A.: Inertial-vision: cross-domain knowledge transfer for wearable
sensors. In: Proceedings of the IEEE International Conference on Computer Vision, pp.
1392–1400 (2017)

50. Tadesse, G.A., Cavallaro, A.: Visual features for ego-centric activity recognition: A sur-
vey. In: Proceedings of the 4th ACM Workshop on Wearable Systems and Applications,
pp. 48–53. ACM (2018)

51. Gönen, M., Alpaydın, E.: Multiple kernel learning algorithms. Journal of machine
learning research 12(Jul), 2211–2268 (2011)

52. Guo, K., Ishwar, P., Konrad, J.: Action recognition from video using feature covariance
matrices. IEEE Transactions on Image Processing 22(6), 2479–2494 (2013)

53. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-
temporal features. VS-PETS Beijing, China (2005)

54. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-euclidean metrics for fast and sim-
ple calculus on diffusion tensors. Magnetic Resonance in Medicine: An Official Journal
of the International Society for Magnetic Resonance in Medicine 56(2), 411–421 (2006)

55. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted gaussian
mixture models. Digital signal processing 10(1-3), 19–41 (2000)
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