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Abstract
Ensuring secure and user-friendly authentication is impor-
tant as mobile devices increasingly handle sensitive data.
Traditional methods like PINs, fingerprints, and facial recog-
nition have privacy limitations, whereas behavioral biomet-
rics offer implicit, continuous authentication. This study
presents a touch-based authentication framework leveraging
feature distribution modeling with a Convolutional Neural
Network (CNN)-based Siamese network. Using Kullback-
Leibler (KL) divergence, we compare touch dynamics dis-
tributions across sessions to differentiate users. To address
behavioral variability, we employ adaptive bandwidth tuning
in kernel density estimation (KDE) for improved probability
modeling. The CNN extracts embeddings from these feature
distributions, while the Siamese network assesses session
similarities. Unlike traditional handcrafted approaches using
summary statistics, our method preserves the full statisti-
cal structure of touch interactions, improving authentica-
tion accuracy. Experimental results demonstrate competitive
Equal Error Rates (EER), underscoring the potential of
distribution-driven touch biometrics for mobile authentica-
tion.

I. INTRODUCTION

Mobile devices are essential for handling sensitive infor-
mation, yet traditional authentication methods—passwords,
PINs, and physiological biometrics—are vulnerable to at-
tacks such as shoulder surfing and spoofing, and rely solely
on entry-point authentication, exposing devices after initial
access.

Continuous Authentication (CA) addresses these limita-
tions by continuously verifying user identity through be-
havioral biometrics, leveraging unique interaction patterns
like scrolling and swiping [1]. This work proposes a touch-
based authentication framework integrating feature distribu-
tion learning with deep learning. Unlike methods relying
on summary statistics [3], we model complete probability
distributions of touch biometrics to capture richer interaction
patterns. Features such as acceleration, movement speed,
and curvature are extracted, and Kullback-Leibler (KL) di-
vergence [4] is used to compare user-specific distributions
across sessions and optimize Kernel Density Estimation
(KDE) bandwidths. This refinement improves the modeling
of individual behaviors, increasing authentication accuracy.

These distribution-based features are processed through
a CNN-based Siamese network [5], which learns session
similarities for authentication. Unlike prior approaches based
on hierarchical models [6] or information-theoretic methods
[7], our method integrates KL divergence into the feature

extraction process, achieving improved differentiation among
users.

This study addresses the following research questions: (1)
What is the effect of using distribution-based feature repre-
sentation on the performance and robustness of biometric au-
thentication models? (2) How can feature representation and
optimization strategies mitigate inconsistencies and noise in
biometric data to improve model performance? These ques-
tions explore the advantages of modeling entire distributions
over summary statistics and strategies for reducing variability
in real-world data, advancing authentication reliability. We
validate our framework on the BehavePassDB dataset [8].
Our method ensures generalization across different devices
and populations by maintaining feature extraction consistency
across screen sizes and demographic variations, contributing
to more secure and scalable mobile authentication.

II. RELATED WORK IN BEHAVIORAL BIOMETRIC
AUTHENTICATION

Behavioral biometrics analyze user interaction patterns,
such as gestures and movements. Gesture-based methods rely
on features like trajectory, velocity, and micro-movements.
Antal et al. [9] demonstrated that aggregating gesture se-
quences improves reliability, with micro-movement features
proving more discriminative than traditional touch features.
However, handcrafted feature extraction in such methods
limits adaptability in real-world conditions.

Research in behavioral biometrics has explored various
modeling techniques, including traditional machine learning,
deep learning architectures like CNNs, and statistical ap-
proaches. CNN-based Siamese networks [10] have proven
effective in improving scalability and robustness in touch-
based authentication by learning discriminative embeddings.
Similarly, Mitra et al. [6] introduced a Bayesian hierarchi-
cal random effects model to improve error rate prediction
and generalizability, demonstrating the potential of statistical
modeling in biometric systems.

Recent studies show that deep learning techniques can
greatly enhance gesture-based biometric authentication. For
example, Wang et al. [11] propose an on-device behav-
ioral authentication framework using deep metric learn-
ing (Siamese networks) to learn discriminative gesture pat-
terns. Their system continuously adapts to users’ behavioral
changes by retraining on the device and even embeds noise
in sensor data to thwart side-channel attacks [11]. Likewise,
Abuhamad et al. [12] introduce AUToSen, a lightweight



LSTM-based continuous authentication scheme that lever-
ages smartphone motion sensors; by analyzing short motion
sequences ( 0.5–1 s) from the accelerometer, gyroscope,
and magnetometer [12]. These deep learning approaches
demonstrate improved biometric accuracy and adaptability
in the face of changing user behavior and potential attacks,
which closely aligns with our goals.

Our approach uses CNNs and Siamese networks to model
full probability distributions, improving biometric accuracy,
robustness, and adaptability while tackling domain adaptation
and behavioral drift.

III. DATASET PREPARATION AND ANALYSIS

The BehavePassDB dataset [8] is a large-scale resource
for behavioral biometrics and continuous authentication. It
includes data from 51 participants across four sessions,
each separated by at least 24 hours to capture intra-subject
variability. The dataset includes touch interaction data along
with optional sensor modalities such as accelerometer, gy-
roscope, and magnetometer, collected from diverse mo-
bile devices. This multi-device data acquisition supports
cross-platform analysis, enabling robust multi-modal stud-
ies and sensor fusion for improved authentication perfor-
mance. BehavePassDB captures four tasks—keystroke, ver-
tical/horizontal swiping, and tapping—recording touch dy-
namics such as timing, pressure, and movement patterns.
It is divided into development, validation, and evaluation
subsets, enabling standardized training and benchmarking.
Studies have shown that the integration of motion sensors
with touch data improves authentication accuracy [11].

This study utilizes touch data from the Text Reading
task, capturing high-resolution time-series data at millisecond
granularity. Key features include timestamps, normalized x/y
coordinates, and touch type (press ”0”, lift ”1”, move ”2”).
Only dragging touch points (touch type = 2) were retained
for consistency.

A. Exploratory Data Analysis and Preprocessing

Exploratory Data Analysis (EDA) revealed inconsistencies
in the collected sensor and touch data, which could affect
the performance of authentication models. In accelerometer
data, timestamp irregularities were identified, where certain
intervals displayed constant values. These lags, likely caused
by internal sensor processing delays, disrupted the temporal
alignment of events, introducing artifacts that could misrepre-
sent user behavior. To address this issue, linear interpolation
was applied to ensure a continuous and consistent progression
of timestamps, preserving the integrity of the time-series data.

Touch interaction data exhibited additional anomalies, par-
ticularly in swipe gestures. Some strokes displayed abrupt
directional changes and irregular trajectories, deviating sig-
nificantly from expected natural swiping patterns. Moreover,
short strokes with very few data points lacked sufficient infor-
mation to represent user behavior reliably, posing challenges
for similarity-based authentication metrics.

These issues emphasize the need for robust preprocessing
methods to mitigate the effects of noisy or inconsistent data.
Ensuring high data quality before modeling is important,
as poor-quality data can significantly impair a model’s per-
formance. Our approach addresses these challenges through

filtering during feature distribution modeling. For instance,
the sessions including few data points were discarded as
a part of this process, as including them may distort the
analysis.

B. Dataset Preparation for Model Training and Evaluation
We split the dataset into training, validation, and test sets

while ensuring a balanced distribution.
1) Training Dataset: The training set utilizes three ses-

sions (g1, g2, g3) through iterative sampling, where the com-
binations are created as (g1, g2), (g2, g3), (g1, g3):

• For each (gi, gj) pair:
– Mated: Same user samples from gi and gj
– Non-Mated: Different user samples within gi

2) Validation Dataset: Using all four sessions
(g1, g2, g3, g4):

• Mated: One g4 sample paired with same user’s
(g1, g2, g3) samples

• Non-Mated: g4 samples paired with different users
Validation dataset used to determine optimal authentication
thresholds.

3) Test Dataset: An independent test set, separate from
(g1, g2, g3, g4) sessions, includes pairs of enrollment samples
and verification samples. This setup prevents data leakage
and enables a reliable assessment of the model’s generaliza-
tion. Although the original dataset includes a separate test
set, its evaluation is limited to AUC, which is insufficient to
examine the results from multiple perspectives and metrics.

IV. PROPOSED METHODOLOGY

Let D be a dataset consisting of touch interaction records
from a set of users U collected across multiple sessions S.
Each user u ∈ U has touch interaction data recorded for
features f ∈ F where F represents the set of behavioral
features (movement speed, acceleration, curvature, cumula-
tive average speed). Let Du,s,f represent the feature data for
user u in session s for feature f .

The following features were extracted to represent user
touch behavior:

• Movement Speed: Calculated as the ratio of movement
distance to time difference between consecutive points.

• Acceleration: Derived from changes in movement speed
across consecutive points.

• Curvature: Computed using three consecutive and dis-
crete points, based on the method proposed by [16], as:

κ =
2(a2b1 − b2a1)

(a21 + b21)
1.5

where coefficients ai and bi are obtained by solving:

ai =
1

2

d2xi

dt2
, bi =

1

2

d2yi
dt2

for the parametric curve (xi(t), yi(t)) formed by the
three points.

• Cumulative Average Speed: Captures average speed
cumulatively across touch intervals, reflecting consis-
tency in user movement.

Our methodology includes the following steps: (1) Parameter
Optimization and Data Preprocessing, (2) User and Session
Filtering, (3) Bandwidth Selection and Distribution Genera-
tion, (4) Model Architecture and Training.



A. Parameter Optimization and Data Preprocessing

To improve model performance, we first preprocess the
touch data by estimating optimal feature distributions. This
preprocessing directly influences model parameters by pro-
viding more reliable input representations. We employ KDE
to characterize user touch patterns:

f(y) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(1)

where x represents the point at which we want to estimate
the density (evaluation point), xi represents the input data
points (observed touch features), and h is the bandwidth pa-
rameter that controls the smoothness of the density estimate.

Algorithm 1 Divergence-Based KDE Parameter Optimiza-
tion

1: for each feature f do
2: Initialize AUCmax ← 0
3: for (τ,Qmin, Qmax) combinations do
4: Generate KDE distributions using Equation 1
5: Compute KL-divergence matrix using Equation 2
6: Evaluate classification AUC for same/different user

pairs
7: if current AUC > AUCmax then
8: τopt ← τ
9: Qmin,opt ← Qmin

10: Qmax,opt ← Qmax

11: AUCmax ← current AUC
12: end if
13: end for
14: end for

For each feature, we determine optimal parameters through
an iterative process that maximizes user discrimination capa-
bility. We first defined the following preprocessing variables
for each feature vector:

• Minimum required data points (τmin) is required to
retain stroke data in a session for reliable distribution
estimation.

• Lower quantile threshold (Qlower) is used to remove
potential outliers in the lower range of the feature vector
of a session

• Upper quantile threshold (Qupper) is used to filter
extreme values in the upper range of a feature vector
of a session

We performed a Divergence-Based KDE Parameter Opti-
mization approach to select the optimum values for the afore-
mentioned preprocessing parameters. For each feature, we
construct a similarity matrix using KL-divergence between
user distributions generated with Equation 2:

DKL(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(2)

To facilitate our parameter selection, we fixed the band-
width parameter to 0.9 for KDE estimation during this step,
as this parameter has been used as a default parameter
across several studies [14]. For each parameter combina-
tion (τ,Qmin, Qmax), we compute pairwise KL-divergences

between all user pairs, creating a feature based similarity
matrix M where Mi,j represents the KL-divergence score
between distributions of users i and j. We evaluate parameter
combination on the training data by treating this problem as
a binary classification problem, with labels 0 and 1 for same-
user and different-user pairs respectively (see Algorithm 1).

The parameter combination that maximizes the ROC-
AUC score is selected. The optimization process can be
similarly applied for EER score. This step ensures that we
select parameters that maximize the discriminative power of
our feature distributions while maintaining data reliability
through minimum point thresholds and outlier removal via
quantile filtering. In an operational scenario, removing such
instances helps ensure a more reliable representation of user
behavior data collected under real-world conditions.

Algorithm 2 Data Filtering Process

1: for each session s do
2: for each user u do
3: if any feature has |Du,s,f | < τmin,f then
4: Mark user as ineligible
5: end if
6: Filter data: Dfiltered ← {x | Qlower,f ≤ x ≤

Qupper,f}
7: end for
8: end for

B. User and Session Filtering

The filtering process aims to keep users to satisfy data
requirements across all features and sessions, while system-
atically removing outliers through feature-specific quantile
thresholds. The user’s data is kept if it meets requirements
for every feature and session. The users who do not meet
this criteria are excluded from the analysis to maintain data
integrity and consistency (see Algorithm 2).

Algorithm 3 Bandwidth Optimization Process

1: for each user u do
2: for each feature f do
3: for each candidate bandwidth b ∈ [0, 1] with step

0.05 do
4: Compute total KL divergence for user
5: Update bopt(u, f) if current divergence is mini-

mal
6: end for
7: end for
8: end for

C. Bandwidth Selection and Distribution Generation

1) User-Specific Bandwidth Optimization: In this paper,
we argue that the bandwidth parameter significantly influ-
ences the quality of the generated distributions and, conse-
quently, the discriminative power of the resulting authentica-
tion system. In the current literature, this bandwidth has been
selected as fixed such as in [14]. To determine optimal band-
width values for each user-feature combination, we developed



a novel approach inspired by triplet loss optimization. The
methodology is formalized (see also Algorithm 3) as follows:

bopt(u, f) = argmin
b∈B

Ltriplet(Db(u, f)) (3)

where bopt(u, f) represents the optimal bandwidth for user u
and feature f , B is the set of candidate bandwidth values, and
Db(u, f) refers the distribution generated with bandwidth b.

2) Distribution Comparison Metric: KL Divergence met-
ric was selected for distribution comparison due to its theo-
retical foundations in information theory and its effectiveness
in measuring differences between probability distributions.

3) Session-Feature Bandwidth Optimization: The band-
width selection process makes use of previously obtained
user-specific bandwidths to optimize the distribution gen-
eration. For each session-feature pair, instead of exploring
an arbitrary range of bandwidth values, we iterate through
bandwidths that were found to be optimal for individual
users in the prior optimization step. This approach ensures
that we select bandwidths that have already demonstrated
effectiveness in capturing user-specific characteristics.

Algorithm 4 Session-Feature Bandwidth Optimization Pro-
cess

1: for each session-feature pair (s, f) do
2: Initialize minimum divergence dmin ←∞
3: Let Bprev be the set of previously obtained user-

specific bandwidths
4: for each bandwidth value b ∈ Bprev do
5: Generate distribution Pb using bandwidth b
6: Compute DKL(Pb||Pref )
7: if DKL(Pb||Pref ) < dmin then
8: bs,f ← b
9: dmin ← DKL(Pb||Pref )

10: end if
11: end for
12: Log optimal bandwidth bs,f and minimum divergence

dmin

13: end for

The optimal bandwidth for each session-feature pair is
formally defined as:

bs,f = argmin
b∈Bu,f

DKL(Pb||Pref ) (4)

where Bu,f represents the set of user-feature bandwidths,
Pb is the distribution generated using bandwidth b, and
Pref is the reference distribution for the current user (see
Algorithm 4.

4) Distribution Generation for Model Input: The opti-
mized bandwidths are subsequently utilized to generate the
final distributions that serve as input to the authentication
model. These distributions incorporate the learned optimal
parameters for each user-feature combination, ensuring max-
imum discriminative power in the feature space:

Dfinal(u, f) = D(Xu,f , bopt(u, f)) (5)
where D represents the distribution generation function,

Xu,f is the raw feature data, and bopt(u, f) is the previously
determined optimal bandwidth.

D. Model Architecture and Training
We used a CNN architecture to process user touch be-

havior patterns based on optimized feature distributions. The
network transforms the distribution data into embeddings
that capture essential user characteristics. We implemented
a triplet loss framework where the CNN learns from groups
of three samples: an anchor sample, a positive sample from
the same user, and a negative sample from a different user.
The training process adjusts these embeddings to minimize
distances between samples from the same user while maxi-
mizing distances between different users’ samples.

Our network architecture consists of two sequential con-
volutional blocks processing touch behavior distributions of
shape (Batch Size, 4, 100). Each block comprises a 1D con-
volutional layer (kernel size=3, channels increasing from 16
to 32), MaxPool1D layer (kernel size=3), ReLU activation,
and dropout regularization. Three fully connected layers
progressively reduce dimensionality through shapes 2944,
1472, and finally 736, forming our embedding space. The
model training employs a triplet loss framework defined as:

Ltriplet = max (0, |f(xa)− f(xp)|22 − |f(xa)− f(xn)|22 + α)
(6)

where f(xa), f(xp), and f(xn) represent anchor, positive,
and negative sample embeddings respectively, and α con-
trols the margin between mated and non-mated samples.
Authentication decisions utilize Euclidean distance between
embeddings:

d(f(xi), f(xj)) =

√∑
k

(f(xi)k − f(xj)k)2 (7)

This architecture effectively learns discriminative user-
specific embeddings while maintaining computational effi-
ciency for mobile deployment.

E. Model Evaluation with Unseen Data
The test set consists of users with no identifiable links

to the training or validation data. To determine the optimal
bandwidth for each test user, we employed a similarity-based
approach. Each user’s data was compared against a set of
candidate bandwidths derived from the training dataset. The
bandwidth that minimized the KL divergence between the test
and training distributions was selected. This ensured that the
most representative bandwidth was used for feature extraction
in unseen test users. While the matched distribution may
not correspond to the exact user, our goal was to find an
approximate bandwidth that best represents the selected user.

V. MODEL COMPARISON

We adopted a baseline model inspired by TouchAnalytics
[3], [15], utilizing handcrafted statistical features that capture
spatial, temporal, velocity, acceleration, and pressure-based
characteristics of touch interactions. The model extracts
20+ features, including stroke duration, trajectory length,
inter-stroke time, velocity percentiles (20%, 50%, 80%),
acceleration percentiles, pressure dynamics, phone and finger
orientation, and path-based metrics such as deviation from the
end-to-end line and directionality.

Authentication is formulated as a binary classification task
using XGBoost, where feature distributions from two user



samples are compared to determine if they originate from the
same individual. The model processes spatial (e.g., start/stop
coordinates, trajectory length), kinematic (e.g., velocity, ac-
celeration percentiles), and pressure-based (e.g., mid-stroke
pressure, pressure change) features to assess user-specific
touch patterns.

To evaluate performance, we employ ROC AUC, Equal Er-
ror Rate (EER), Accuracy, Precision, and F1 Score, ensuring
a comprehensive assessment of authentication effectiveness
across varied user behaviors.

VI. EXPERIMENTAL SETUP

We executed the Algorithm 1 for the following ranges:
lower threshold (Qlower) from 0 to 0.3 with 0.05 increments,
higher threshold (Qupper) from 0.7 to 1.0 with 0.05 incre-
ments, and minimum data points (τmin) from 4 to 30 with
steps of 2. We found the values in Table I as best parameters
using our training dataset. After applying Algorithm 2, the
number of eligible pairs decreased from 120 to 96. During

TABLE I: Optimized Feature-Specific Parameters

Feature τmin Qlower Qupper

Movement Speed 4 0.30 0.90
Acceleration 4 0.25 0.85
Curvature 12 0.20 1.00
Cumulative Avg. Speed 10 0.00 0.85

the threshold optimization process, ROC threshold (1.58) was
selected based on maximized difference between TPR and
FPR. On the other hand, EER threshold (1.39) was selected
on the point where FPR equals the FNR.

VII. RESULTS

We compared our approach, which utilizes user-specific
bandwidth selection (referred to as the optimized approach),
with a baseline XGBoost model. The evaluated user-specific
bandwidths and their corresponding performance metrics are
presented in Table II. Additionally, we developed an alterna-
tive model using a fixed bandwidth of 0.9, following [14],
while applying the same user and session filtering criteria.
This alternative model (referred to as the non-optimized
approach) serves to highlight the impact of user-specific
bandwidth selection by contrasting it against a standardized
setting.

Our methodology demonstrated significant improvement
over the XGBoost baseline across multiple performance
metrics, as summarized in Table III. It achieved an ROC AUC
score of 0.6134 (compared to baseline 0.4924) and improved
precision from 0.2463 to 0.4286. The EER threshold selec-
tion strategy (OET) proved more effective than ROC thresh-
olding (ORT), yielding higher balanced accuracy (0.6409 vs.
0.6025) and MCC scores (0.2674 vs. 0.1991). The optimized
approach maintained consistent recall rates of 0.7742 across
both threshold types, whereas the non-optimized approach
showed limited recall performance (0.0968 ORT, 0.0645
OET).

The results indicate that while the non-optimized approach
achieves higher accuracy, it performs worse in key biometric
authentication metrics such as Equal Error Rate (EER) and

TABLE II: Comparison of Optimized (O) and Non-
Optimized (NO) Model Performances

Metrics Validation Test
O NO O NO

ROC AUC 0.7573 0.6849 0.6134 0.5667
EER 0.3258 0.3623 0.4489 0.4251
ROC Threshold (ORT) Performance
Accuracy 0.5788 0.5693 0.5417 0.6458
Precision 0.1102 0.1011 0.3934 0.3333
Recall 0.8116 0.7464 0.7742 0.0968
F1 Score 0.1941 0.1780 0.5217 0.1500
Balanced Accuracy 0.6874 0.6519 0.6025 0.5022
MCC 0.1821 0.1475 0.1991 0.0072
EER Threshold (OET) Performance
Accuracy 0.6744 0.6377 0.5938 0.6354
Precision 0.1213 0.1050 0.4286 0.2500
Recall 0.6739 0.6377 0.7742 0.0645
F1 Score 0.2055 0.1803 0.5517 0.1026
Balanced Accuracy 0.6742 0.6377 0.6409 0.4861
MCC 0.1771 0.1374 0.2674 -0.0470

TABLE III: Comparison of Baseline and Optimized Models
on Test Set Metrics. ORT: Optimized ROC Threshold, OET:
Optimized EER Threshold

Measure Baseline OET ORT
ROC AUC 0.4924 0.6134 0.6134
EER 0.4802 0.4489 0.4489
Accuracy 0.5310 0.5938 0.5417
Precision 0.2463 0.4286 0.3934
F1 Score 0.4238 0.5517 0.5217
Balanced Accuracy 0.5158 0.6409 0.6025
MCC 0.1843 0.2674 0.1991

ROC AUC, suggesting potential overfitting to specific pat-
terns. The optimized approach, particularly under the EER
threshold, shows improved performance by reducing both
false acceptance and false rejection rates. The Detection Error
Tradeoff (DET) curve further supports this, demonstrating
that the optimized model maintains a lower false negative
rate across different false positive rates.

The Wilcoxon Signed Rank test is used to test whether
each user’s performance differences on the test dataset be-
tween the two approaches are statistically significant. The
results show that the optimized approach outperforms the
non-optimized approach based on False Positive Rate (FPR)
(Z = -0.06, p = 0.016, N = 17), Matthews Correlation
Coefficient (MCC) (Z = -0.14, p = 0.016, N = 17), and
False Negative Rate (FNR) (Z = -0.14, p = 0.021, N = 17),
confirming that the improvements are statistically significant.

For the acceleration feature (Figure 2), the optimized
approach with bandwidth (bopt = 0.05) is able to simulate
distributions, particularly in the sessions g2 and g4. This
suggests that a smaller bandwidth may be more suitable for
capturing fine-grained acceleration patterns.

VIII. CONCLUSION AND DISCUSSION

Our approach outperforms both the baseline and non-
optimized approach, confirming the effectiveness of complete
behavioral distribution modeling. While our feature-specific



Fig. 1: DET Curve Comparison of Non-Optimized and Op-
timized Models.

Fig. 2: Acceleration feature distributions for User 31 with raw
and processed data. Parameters: minimum points=4, lower
quantile=0.25, upper quantile=0.85, fixed bandwidth=0.9, op-
timized bandwidth=0.05, bandwidth range=0-1.

optimization showed promise with a 0.7742 recall in cross-
session authentication, EER rates above 0.4 highlight ongoing
challenges in touch interaction variability. Similar perfor-
mances were also observed in the literature. The study of [8]
achieved a 0.67 AUC score using an LSTM-based model,
while the study of [18] reported a 0.732 AUC score with an
LSTM-based benchmark. As demonstrated by [1] and [17],
integrating additional sensor modalities could improve au-
thentication robustness. Future work should explore symmet-
ric measures such as Jensen-Shannon Divergence to address
the KL divergence limitations, while developing computa-
tionally efficient optimization techniques for real-time pro-
cessing. The practical implications suggest prioritizing adap-
tive preprocessing pipelines and robust temporal adaptation
mechanisms for long-term deployment stability, as stated in
[19]. Considering the research questions, distribution-based
feature representation improves authentication performance
by capturing complete behavioral patterns rather than just
statistical summaries. In addition, methodology overcomes
the data inconsistencies through adaptive bandwidth selec-
tion, quantile-based outlier removal, and minimum data point
thresholds.
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