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Chapter 1

November 5, 2018

1 Field

Definition A field is a set F , together with two mappings of F ×F → F , called addition

and multiplication, written as (a, b)→ a+b and (a, b)→ ab respectively with the following

properties:

(A1) a+ b = b+ a for all a, b ∈ F (commutativity)

(A2) a+ (b+ c) = (a+ b) + c for all a, b, c ∈ F (associativity)

(A3) There is an element in F , denoted by 0F , such that a + 0F = a ∀a ∈ F (additive

identity)

(A4) For each a ∈ F there is an element in F , denoted by −a, such that a + (−a) = 0F

(additive inverse)

(M1) ab = ba for all a, b ∈ F (commutativity)

(M2) a(bc) = (ab)c for all a, b, c ∈ F (associativity)
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(M3) There is an element in F , denoted by 1F , such that a1F = a ∀a ∈ F (multiplicative

identity)

(M4) For each a 6= 0F there is an element in F , denoted by a−1, such that aa−1 = 1F

(multiplicative inverse)

(D1) a(b+ c) = ab+ ac ∀a, b, c (distributive law).

Example: Set of real numbers R with standard addition and multiplication.

Example: Set of binary numbers with modulo 2 addition and multiplication.

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

Example: Let F = R× R. Let us define · and + as:

x+ y := (x1 + y1, x2 + y2),

x · y := (x1y1 − x2y2, x1y2 + x2y1),

where x = (x1, x2) ∈ F, y = (y1, y2) ∈ F .

Exercise: Let F = (0,∞) = R+ (positive real numbers) Given x + y := xy, x · y :=

eln(x) ln(y), show that F satisfies the axioms of field. Find 1F and 0F .

Question: Are polynomials a field? Are matrices a field?
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Linear Spaces

2 Linear Spaces

Definition A linear space (vector space) V is a set, whose elements are called vectors

associated with a field F , whose elements are called scalars. Vectors can be added and

they can be multiplied by scalars. These operations satisfy the following properties:

Vector addition: x+ y, + : V × V → V

(A1) x+ y = y + x ∀x, y ∈ V (commutativity)

(A2) x+ (y + z) = (x+ y) + z ∀x, y, z ∈ V (associativity)

(A3) x+ 0 = x ∀x ∈ V (additive identity)

(A4) x+ (−x) = 0 ∀x ∈ V (additive inverse)

Scalar multiplication: ax, · : F × V → V

(M1) a(bx) = (ab)x for all a, b ∈ F , x ∈ V (associativity)

(M2) a(x+ y) = ax+ ay for all a ∈ F , x, y ∈ V (distributive)

(M3) (a+ b)x = ax+ bx for all a, b ∈ F , x ∈ V (distributive)

(M4) 1x = x (unit rule)

Example: Show that 0x = 0

Proof:
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Linear Spaces

Example: (linear space) Set of all vectors of the form v=(a1, a2, . . . , an) with ai ∈ F .

Addition, multiplication are defined componentwise. This space is denoted as F n.

Let x, y ∈ F n x = (a1, a2, . . . , an), y = (b1, b2, . . . , bn)

Addition: x+ y := (a1 + b1, a2 + b2, . . . , an + bn)

Multiplication: cx := (ca1, ca2, . . . , can)

Most common examples are Rn and Cn.

Example: Set of all real valued functions t→ f(t) defined on the real line F = R.

Example: Set of all polynomials with degree n with coefficients in F .

Example: Set of all polynomials with degree less than n with coefficients in F .
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Linear Spaces

Definition Let V be a linear space defined over field F , denoted by (V, F ). A subset W

of V is called a subspace if sums and scalar multiples of elements of W belong to W . That

is,

(S1) w1 + w2 ∈ W ∀w1, w2 ∈ W

(S2) cw ∈ W ∀w ∈ W and ∀c ∈ F

Subset has to be closed under addition and scalar multiplication. All other properties are

inherited from the original linear space.

Example: linear space V = R2, subspace W = [a 0]T : a ∈ R

Example: linear space V = R2, subspace W = [a 1]T : a ∈ R

Example: linear space V = set of all real valued functions t→ f(t);

subspace W1 = set of all continuous functions.

subspace W2 = set of all functions periodic with π.

Remark: 0 vector itself is a subspace and it is the smallest subspace.

Definition The sum of two subsets Y and Z of a linear space X, denoted as Y + Z, is

the set of all vectors of form y + z, where y ∈ Y , z ∈ Z.
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Linear Spaces

Example: Show that Y + Z is a linear subspace of X, if Y and Z are

Proof:

Example: Prove that if Y and Z are subspaces of linear space X, so is their intersection

Y ∩ Z.

Proof:

Example: If Y and Z are subspaces of a linear space X, is their union Y ∪Z a subspace?

Definition Let (V, F ) and (W,F ) be two linear spaces defined over the same scalar field

F . The product space of (V, F ) and (W,F ) is defined as

• V ×W = {(v, w) : v ∈ V,w ∈ W}
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Linear Spaces

• (v, w) + (x, y) := (v + x,w + y) (vector addition)

• a(v, w) := (av, aw) (scalar multiplication) .

Definition A linear combination of n vectors x1, x2, , . . . , xn of a linear space C is a

vector of the form a1x1,+a2x2+, . . . ,+anxn, where ai’s are scalars in F .

The set of all linear combinations of x1, x2, , . . . , xn is called the span of {x1, x2, , . . . , xn};

denoted by sp{x1, x2, , . . . , xn}.

Definition Vectors x1, x2, , . . . , xn in X are said to be linearly independent iff

a1x1,+a2x2+, . . . ,+anxn,= 0 implies ai = 0,∀i. Otherwise, they are linearly dependent.

Example:

Example: Consider the linear space of polynomials with degree n ≤ 2. Let subset

S={P1, P2, P3} be such that p1(t) = 1, p2(t) = t, p3(t) = t2, ∀t

Is this set linearly independent?

7



Linear Spaces

Example: S={cos(t), sin(t), cos(t− π/3)}

Definition Let V be a linear space and (finite) set of vectors S={x1, . . . , xn} be a subset

of V . S is said to be a basis for V iff

• Span(S) = V

• S is a linearly independent set.

A (finite dimensional) linear space V has many bases. All these bases must have the same

number of vectors. That number is called the dimension of V .

Example: V = R2, consider the two bases:
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Linear Spaces

S1 =


 0

1

 ,
 1

0


, S2 =


 1

1

 ,
 2

3




Definition An ordered basis is a basis (x1, x2, . . . , xn), where basis vectors are given

in a specific ordering.

If (x1, x2, . . . , xn) is an ordered basis of V and y ∈ V , then there is a unique n-tuple of

scalars (a1, a2, . . . , an) such that y = ∑n
i=1 aixi.

Scalars (a1, a2, . . . , an) are called the components of y with respect to the ordered basis

(x1, x2, . . . , xn).

Definition Given n-dimensional linear space V over (field) R, let B = {b1, b2, . . . , bn} be

an ordered basis for V . Suppose a vector of v ∈ V satisfies v = ∑n
i=1 αibi, where αi ∈ R

for i = 1, 2, . . . , n, then the coefficients αi are called the coordinates of v w.r.t. basis B.

α =



α1

α2

...

αn


∈ Rn we use notation α = [v]B.
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Linear Spaces

Example: Let R2×2 denote the linear space of real valued 2× 2 matrices. Addition and

scalar multiplication are defined as:

 a1 b1

c1 d1

+

 a2 b2

c2 d2

 =

 a1 + b1 a2 + b2

c1 + c2 d1 + d2

 ,

α

 a b

c d

 =

 αa αb

αc αd

 .

Example: V : linear space of polynomials with degree d ≤ 2. Let basis B={P1, P2, P3}

be such that p1(t) = 1, p2(t) = t, p3(t) = t2∀t. Given p ∈ V with p(t) = a + bt + ct2, we

can write [p]B =



a

b

c


.

Example: With respect to some ordered basisB1 = (x1, x2) of R2, let the vectors y1, y2, y3

be presented by [y1]B1 =

 1

1

, [y2]B1 =

 1

0

, [y3]B1 =

 2

3

.
That is, y1 = 1x1 + 1x2, y2 = 1x1 + 0x2, y3 = 2x1 + 3x2.

Let our new basis be B2 = (y1, y2). Express y3 w.r.t. this new basis.
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Linear Spaces

Remark: For a given ordered basis, the representation of a vector is unique.

Exercise: Prove the remark.
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Linear Spaces

Theorem Let V be an n-dimensional linear space over R. Let B1 and B2 be two bases

for V , then there exist n× n real matrix P such that [x]B1 = P [x]B2 ∀x ∈ V .

Proof:
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Linear Spaces

Claim: Matrix P is invertible.
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Linear Spaces
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3 Normed linear spaces

Consider a linear space V over F , where F is either R or C. Let there be a function

x → ‖x‖ that assigns to each x ∈ V , a nonnegative real number ‖x‖ ∈ R ≥ 0. Such

function is called a norm if it satisfies the following properties.

(P1) ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖

(P2) ‖αx‖ = |α| ‖x‖ ∀x ∈ V and α ∈ F

(P3) ‖x‖ = 0⇔ x = 0

The expression "‘‖x‖"’ is read "‘the norm of x"’ and the function ‖.‖ is said to be a norm

on V . The triplex (V, F, ‖.‖) is called a normed space.

Remark: Perhaps the most important use of the norm is that through it, we can quantify

"‘distance"’ between two points in our linear space. Namely, the distance between x1, x2 ∈

V is the norm of the vector x1 − x2 or x2 − x1: ‖(x1 − x2)‖. Since x = x − 0, the norm

of x, ‖x‖ is the distance of x to the origin 0. With a proper tool for measuring distance

(norm), one can begin studying the "‘geometry "’ of the space (parallelism, orthogonality,

area, volume, shape in general).

Example: Let V = R2, F = R, and let x =

 α1

α2

.
i) ‖x‖1 := |α1|+ |α2|. Is ‖.‖1 a norm?

15



Normed linear spaces

ii) ‖x‖2 := (|α1|2 + |α2|2) 1
2 . Is ‖.‖2 a norm?

iii) ‖x‖∞ := max(|α1|, |α2|). Is ‖.‖∞ a norm?

All these norms can be generalized into what we call a ’p-norm’.

‖x‖ := (|α1|p + |α2|p)
1
p

.
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Normed linear spaces

Note that limp−→∞ ‖x‖p = ‖x‖∞.

Geometric visualization of these norms:

Example:

Example:

17



Normed linear spaces

Special cases:
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Matrix Norms

4 Matrix Norms

Example: Let V = Rn×m, and A = [aij],

‖A‖ = max
i,j
|aij| is a norm.

Example: Let V = Rn×m, and A = [aij],

‖A‖ = max
i

n∑
j=1
|aij| (abs sum of rows)

Exercise: Show that this is a norm.

There are different ways to define matrix norms. One way of defining matrix norms is to

consider the matrix as a vector.

Example:
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Matrix Norms

20



Matrix Norms

Definition A : Rn → Rm be an m × n matrix. Let ‖.‖Rn and ‖.‖Rm denote the norms

(vector norms) in Rn and Rm respectively. The induced norm of a matrix is defined as

‖A‖ := max
x∈Rn,x 6=0

‖Ax‖Rm

‖x‖Rn

.

Remark: The induced matrix norm is defined in terms of vector norms. An equivalent

definition is:

‖A‖ := max
‖x‖=1

‖Ax‖ .

Remark: ‖Ax‖ ≤ ‖A‖ ‖x‖ (for induced norms).

Furthermore, there exists a vector x∗ such that ‖Ax∗‖ = ‖A‖ ‖x∗‖ which may not be

unique.

Example: Choose ‖.‖2 in Rn and Rm,

‖A‖ = max
‖x‖=1

‖Ax‖ = max
‖x‖=1

√
(Ax)TAx = max

‖x‖=1

√
xTATAx
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Matrix Norms

Example: Choose ‖.‖∞ as the norm in Rn and Rm and find the induced norm ‖A‖
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Convergence

5 Convergence

Definition Let (V, F, ‖.‖) be a normed space. Let {vn}∞n=1 be a sequence of vectors in

V . vn ∈ V n = 1, 2, . . .. The sequence is said to be convergent to the limit v̄ ∈ V iff

‖vn − v̄‖ → 0 as n→∞

OR: given any ε > 0, ∃N (N depends on ε) such that n ≥ N implies ‖vn − v̄‖ ≤ ε.

Remark: A sequence that is not convergent is called divergent.

Example: Given V = R and ‖v‖ = |v|, consider the sequence
{(

1
2

)n}∞
n=1

.

Example: Consider the sequence {(−1)n}∞n=1
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Convergence

Note: In most engineering applications, we are interested in the convergence of an iterative

algorithm. In general the problem is, we do not know where! The problem with the given

definition of the convergence is that it requires the limiting element v̄ ∈ V , an element we

may not know, to verify convergence. An attempt to get rid of ′v̄ − dependence′ resulted

in the following concept.

Definition Let (V, F, ‖.‖) be a normed space. A sequence {vn}∞n=1 in V is said to be

a Cauchy sequence if ∀ε > 0, ∃N(depending on ε) such that ‖vn − vm‖ < ε for all

n,m > N .

Remark: Every convergent sequence is a Cauchy sequence. The converse, in general, is

not true.

Example: Consider the normed space (Q,Q, |.|), (i.e., set of rational numbers over the

field rational numbers with norm being the absolute value). Is the sequence
{

1 +∑n
i=1

1
i!

}∞
n=1

convergent?

Definition A normed space is said to be complete if every Cauchy sequence is conver-

gent. A complete normed space is called a Banach Space.
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Convergence

Example: "‘A normed space that is not complete"’

Let V = {f |f : [−1, 1] → R, f is continuous and
´ 1
−1 |f(t)|dt < ∞}. Define ‖f‖1 :=

´ 1
−1 |f(t)|dt.

Now consider the sequence {fn}∞n=1 defined as follows:
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6 Inner Product Space

An inner product space is a linear space with an additional structure called inner product.

Definition Let V be a linear space over field F . An inner product is a map of the form

〈·, ·〉 : V ×V → F that satisfies the following three axioms for all vectors x, , y, z ∈ V and

all scalars α ∈ F .

1) 〈x, y〉 = 〈y, x〉 (conjugate symmetry)

2) a) 〈αx, y〉 = α 〈x, y〉 (linearity in the first argument)

b) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (linearity in the first argument)

3) 〈x, x〉 ≥ 0 with equality only for x = 0 (positive defineteness)

Note that:

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

and, 〈x, αy〉 = α 〈x, y〉
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Inner Product Space

Example: V = Cn, 〈x, y〉 = ∑n
i=1 xiyi

Example:

Theorem "‘Cauchy-Schwarz inequality"’

| 〈x, y〉 |2 ≤ 〈x, x〉 〈y, y〉

Proof:
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Inner Product Space

Remark: An inner product induces a norm defined as

‖x‖ =
√
〈x, x〉

Theorem
√
〈x, x〉 is a norm.

Proof:

Remark: Every inner product space is a normed space. Converse is not true.

Definition An inner product space that is complete with respect to the norm induced by

the inner product is called a Hilbert Space.
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Inner Product Space

Definition "‘Orthogonality"’

Two vectors x, y ∈ V are said to be orthogonal if 〈x, y〉 = 0. Likewise, two subsets

S1, S2 ⊂ V are said to be orthogonal if 〈x, y〉 = 0 for all x ∈ S1 and y ∈ S2.

Example: V = Rn , 〈x, y〉 := ∑n
i=1 xiyi or (〈x, y〉 = xTy where x = [x1, x2, . . . , xn]T ).

Consider the canonical basis set B = {e1, e2, . . . , en} where ei = [0, . . . , 0, 1, 0, . . . , 0]T .

Then we have 〈ei, ej〉 = 1 if i = j and 〈ei, ej〉 = 0 otherwise, i.e., 〈ei, ej〉 = δij.

Example: V = {f |f : [−π, π]→ C such that
´ π
−π |f(t)|2dt <∞, and f is continuous }

Let 〈f1, f2〉 =
´ π
−π f1(t)f2(t)dt be the inner product.

Consider the set of vectors {ejnt}∞n=−∞

Question: Let V be an inner product space, Let S1 = {v1, v2, . . . , vn} be a linearly inde-

pendent set. Can we obtain another set S2 = {w1, w2, . . . , wn} such that

i) Span(S2) = Span(S1)

ii) The vectors in S2 are pairwise orthogonal. That is, 〈wi, wj〉 = 0 ∀i 6= j ?
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Gram-Schmidt Orthogonalization

7 Gram-Schmidt Orthogonalization

Step 1: w1 := v1

Step 2: w2 := v2 − 〈v2,w1〉
〈w1,w1〉w1

Step 3: w3 = v3 − 〈v3,w1〉
〈w1,w1〉w1 − 〈v3,w2〉

〈w2,w2〉w2

...

Step n: wn := vn −
∑n−1

i=1
〈vn,wi〉
〈wi,wi〉wi

Proof:
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Gram-Schmidt Orthogonalization
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8 Linear Mapping

Definition Let V and W be linear spaces over the same field F . A linear transformation

T is a mapping T : V → W satisfying

T (a1x1 + a2x2) = a1T (x1) + a2T (x2) ∀a1, a2 ∈ F and ∀x1, x2 ∈ V

Example: V = W polynomials of degree less than n in S; T = d
ds

Example: V = W = R2. Let A be defined as,

Ax =

 α1

α2 + α1

 , where x =

 α1

α2

 .
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Linear Mapping

Example:

Example: V = W = R2. If T is a rotation around the origin by an angle θ then T is a

linear mapping.

Example: V = W ={continuous functions of type f : [0, 1]→ R}; Tf =
´ 1

0 f(s)ds

Definition Given linear transformation T : V → W , the null space of T is the set of

all x ∈ V satisfying T x = 0w. That is,

N (T ) := {x ∈ V : T x = 0}

Definition Given linear transformation T : V → W , the range space of T the set of

all w ∈ W satisfying T v = w. That is,

R(T ) := {w ∈ W : w = T v for some v ∈ V }

Claim: For a linear transformation T : V → W , N (T ) is a linear subspace of V.

Proof:
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Linear Mapping

Claim: R(T ) is a subspace of W .

Proof:

Definition A linear transformation T : X → Y is one-to-one if x1 6= x2 ⇒ T (x1) 6=

T (x2)

Example:

Example:

Theorem Let T : V → W be a linear transformation. Then mapping T is one-to-one if

and only if N (T ) = {0}.
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Linear Mapping

Proof:

Definition A linear transformation T : X → Y is onto if R(T ) = Y , otherwise it is

called into.

Example:

Example:
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Matrix representation of a linear transformation

9 Matrix representation of a linear transformation

Let V (dim(V )=n), and W (dim(W )=m) be two linear spaces over the same field F .

Let A : V → W be a linear transformation. Given two bases B = (v1, v2, . . . , vn)

and C = (w1, w2, . . . , wn), transformation A can be represented by an m × n matrix

[aij] (aij ∈ F ) such that for every v ∈ V and w ∈ W satisfying w = Av, we have

[w]C = [aij][v]B.

m × n matrix A is called the matrix representation of A : V → W with respect to the

basis sets B and C.

Example: Let A : R2 → R2 be a 90◦ counter-clockwise rotation about the origin. Show

that A is linear. Find the matrix representation of A for

i) B1 = (v1, v2)

ii) B2 = (v1, v3) where,
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Matrix representation of a linear transformation

Example: V = R2×2 (space of 2× 2 real matrices) .

Let linear map A : V → V be Av = Sv + vST , where S =

 0 1

−1 0

 for the basis

B = B̄ =


 1 0

0 0

 .
 0 1

0 0

 ,
 0 0

1 0

 ,
 0 0

0 1


. Find the matrix representation of

A.
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Matrix representation of a linear transformation

Example: V = {f : f : R → R, f is a polynomial with deg < 3}. A : V → V is defined

as A(f) = f ′ (the derivative of f). Let basis the be B = {1, s, s2, s3}. Find the matrix

A.
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Matrix representation of a linear transformation

Given the matrix representation of a linear transformation At : V → W with respect to

the basis sets B and C. One can draw the following diagram considering a change of

basis.

Special case: If W = V , that is At is a map from V to itself, At : V → V , then bases B,

C, B̄ and C̄ can be chosen to be the same. Then we have:
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Matrix representation of a linear transformation

Example: Consider the 90◦ counter-clockwise rotation example; find P ∈ R2×2 such that

[v]B1 = P [v]B2 and verify that A2 = P−1A1P .
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Range and Null Space

10 Range and Null Space

Let A : V → W be a linear map. Let dim(V )= n and Let dim(W )= m. Recall that,

• R(A) : range space of A, subspace of W ⇒ dim(R(A))≤ m.

• N (A) : null space of A, subspace of V ⇒ dim(N (A))≤ n.

Theorem dim(R(A))+dim(N (A)) = dim (V )

Proof:
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Range and Null Space

Definition Given linear transformation A : V → W , let A be the matrix representation

(wrt some bases). Then rank of m× n matrix A is defined as rank(A)=dim(R(A))

Fact: Rank(A) is equal to maximum number of linearly independent column vectors of

A. Rank(A) is equal to maximum number of linearly independent row vectors of A.

Example: At : V → W , where dim(V )=2, and dim(W )=4

Example:
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