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Abstract – In this paper, parallel implementation of a real-time intelligent video surveillance system 

on Graphics Processing Unit (GPU) is described. The system is based on background subtraction 

and composed of motion detection, Camera Sabotage Detection (Moved Camera, Out-of-Focus 

Camera and Covered Camera Detection), Abandoned Object Detection and Object Tracking 

algorithms. As the algorithms have different characteristics, their GPU implementations have 

different speed-up rates. Test results show that when all the algorithms run concurrently, 

parallelization in GPU makes the system up to 21.88 times faster than the CPU counterpart, 

enabling real-time analysis of higher number of cameras. 
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I. INTRODUCTION 

Keeping the security of public places has become increasingly more important in the 

recent years. Video surveillance systems take a significant role in security management of 

sites as well as towns and cities. In traditional video surveillance systems, there should be 

an operator actively watching the videos captured by the security cameras. The operator 

is expected to focus on all the cameras incessantly not to miss potential sabotage 

attempts, to track individuals for any potential suspicious behavior and to detect 

potentially dangerous abandoned objects. However, this is not a realistic expectation 

considering the high number of cameras. To overcome this problem, automated systems 

that can detect camera tampering, abandoned objects and track individuals in real time 

to raise an alarm to inform the operators have been put into use. These large-scale video 

surveillance systems should have the following properties to be of practical use:  

 They should have low false alarm - high true alarm rates, 

 The computational cost should be low to allow concurrent running of different 

automated analysis and detection algorithms on all the required cameras.  

Video surveillance algorithms typically run on embedded systems –running algorithms on 

a few cameras- or on centralized locations where a number of servers are utilized for 
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processing. Since these systems should work in real-time and high number of cameras 

needs to be analyzed, the computational cost of the algorithms tends to be high, 

prohibiting large-scale deployment.  

There are a number of video processing systems implemented on Graphics Processing 

Unit (GPU) leveraging the computational performance gain of these systems.  In the 

method of [15], the authors develop a fast system that performs multiple image 

processing tasks by parallelizing a number of stereo vision algorithms. In the method of 

[18], a multi-cue face tracking system is proposed where different cues are combined 

under a particle filter tracking system and because of the high number of the particles; 

they implement a parallel system with GPU to achieve better performance.  In the study 

of [16], a fast face tracking system boosted on GPU is proposed. A computer vision library 

implemented in GPU is presented in [2]. In this library, various well known computer 

vision algorithms are implemented in GPU such as computing image pyramids. However 

in the literature, - to best of our knowledge- there is no complete GPU based system 

implementing the whole set of video analytics algorithms used for real-time video 

surveillance.  

Video surveillance systems typically consist of static and PTZ (Pan-Tilt-Zoom) cameras. The 

PTZ cameras are either controlled manually by the operators or used in patrol mode 

whereby the camera position is changed at regular intervals to predetermined positions. 

Hence in these systems, static camera assumption can be made thus allowing use of 

background subtraction based methods. Any camera motion not initiated by the operator 

or the system itself can be assumed a camera tampering event.  

In this paper, we propose a GPU based automated video analysis system for video 

surveillance allowing processing of up to 21.88 times higher number of cameras compared 

to a Central Processing Unit (CPU) based implementation. The system is implemented 

using CUDA and composed of the following components which are typically needed in a 

real-time video analytics system: 

 Video Motion Detection (VMD) 

 Camera sabotage detection: 
o Moved Camera Detection (MCD) 
o Out-of-Focus Camera Detection (OOFCD) 
o Covered Camera Detection (CCD) 

 Abandoned Object Detection (AOD) 

 Object Tracking (OT) 
 

The overall diagram of the system is shown in Figure 1. Images from different cameras are 

captured by the system in real-time and placed into the CPU memory. Then these images 

are transferred into the GPU global memory asynchronously. The aforementioned 

algorithms are run on the GPU using the images in GPU memory. The asynchronous 

transfer allows simultaneous processing and transfer, i.e. the current image is processed 

in the GPU while the next image is transferred from CPU memory into the GPU memory. 
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Figure 1. Overall system diagram. 
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The camera streams can be processed independently and no synchronization is required 

between the different camera streams. In the CPU, parallelism is achieved at camera level; 

a separate thread is assigned to each camera and each thread processes the 

aforementioned video analytics algorithms in a serial fashion. All the cameras have the 

same thread priority and context switch is handled by the Windows OS scheduler.  In the 

GPU version, images are processed in the order of their arrival, regardless of which 

camera they belong to. The optimization in the GPU is twofold; (i) parallelization of the 

algorithms and benefiting from the parallel architecture on the GPU, (ii) generating a 

more efficient data flow and preventing replication of computation by intertwining the 

various algorithms and sharing/reusing the computed data. 

In section II, a literature survey regarding these algorithms and GPU implementations is 

presented. Implementation of VSAM background subtraction and camera tamper 

detection algorithms on the GPU are explained in detail in section III. In section IV, V and 

VI Improved Adaptive Gaussian Mixture Model (IAGMM), abandoned object detection 

and object tracking-video motion detection algorithms are described with their GPU 

implementations respectively.  In section VII, the performance analysis of the 

implemented algorithms in GPU and their comparison with the CPU counterparts are 

presented. Concluding remarks are given in the final section. 

II. RELATED WORK 

In automated video surveillance systems, the fundamental step is estimating a reliable 

background image and updating this background image to reflect any changes in the 

environment. In pixel based approaches, each pixel is modeled separately.  While this 

method is able to obtain detailed shape information of moving objects, the segmentation 

is very sensitive to changing background. In block based approaches, the image is divided 

into blocks and the features of these blocks are used for background modeling. By this 

way, the problem of sensitivity to changing background is reduced, since blocks are less 

sensitive to changes in the background than individual pixels. On the other hand, it cannot 

obtain detailed shape of moving objects. In order to benefit from the advantages of these 

two methods, a hierarchical method combining these two approaches was proposed by 

the authors of [6]. In the method of [19], they use artificial   neural   network algorithm 

for background subtraction. Their aim is to develop an algorithm that enables obtaining a 

background through a self- learning manner. Then, based on the learnt model, moving 

objects can be detected. In [3] seven commonly used methods in background subtraction 

algorithms are compared. The authors of [17] try to overcome the drawbacks of Gaussian 

Mixture Model which are requirements of large memory space and “slow convergence”. 

They develop an online learning method for improving Gaussian Mixture Model (GMM). 

According to their approach, Expectation Maximization method is combined with a 

recursive filter where each Gaussian has a learning parameter that gets closer to basic 

recursive learning after many observations. 

Although, above methods are successful in extracting a background with acceptable 

accuracy, they are not able to overcome challenges like non-static background, different 

whether conditions, camera noise and extracting the full shape of the foreground objects 
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with their inner pixels. On the other hand, Improved Adaptive Gaussian Mixture Model 

(IAGMM) [34] is a robust method and also it is computationally not very complex.  

Camera sabotage detection (tampering) algorithms aim to detect deliberate attempts by 

a person to make captured video unusable and can be analyzed in 3 categories: detection 

of “Out-of-Focus Camera”, “Moved Camera” and “Covered Camera”. In the method of 

[27], the first step for performing camera sabotage detection is estimating a background 

image. For background estimation, the method described in Video Surveillance and 

Monitoring (VSAM) report of [7] is used. According to VSAM, background is estimated by 

adaptively updating previous background images. Background estimation allows 

comparing the estimated background with the past background information to detect any 

suspicious event. To detect the covered camera view, the histogram of brightness values 

of the current image pixels and the estimated background pixels are compared. If the 

camera is moved, the current and the previous background images are expected to be 

different. So, a delayed background image is also maintained as a reference and the 

current background image is compared against the delayed background image.  If the 

camera is out-of-focus, the amount of high frequency data of the current image should 

be lower than that of the background image and detection is done using this information. 

In another approach, two pools are kept, one of them, named short-term pool, holds new 

frames and the other, long-term pool, holds older frames. The camera tamper detection 

is done by comparing the frames in these two separate pools [26]. In [12], they tackle the 

camera sabotage problem by keeping a background image containing edges of the 

objects. For covered camera detection, entropies of the pixels in the background image 

are calculated. If the camera is covered, the entropy is expected to be lower than usual. 

If the camera gets defocused, the edges are expected to disappear causing the pixel count 

in the background image to get lower. For the detection of camera movement, a block-

matching algorithm with 2 parameters is used. The first parameter gets the optimal value 

of the axes of the background and current image while the second parameter is the 

replacement of current and background images. Among these methods, we adopt the 

method of [27], as it is proven to handle the sabotage cases with high success rates.   

There are various algorithms proposed for abandoned object detection algorithms in the 

literature. A method using background subtraction to detect objects and ground-truth 

homography to handle occlusions is described in [1]. Abandoned objects are detected 

when objects move away from each other. In the method of [13], object tracking, 

detection of drop-off events and stationary object detection methods are used in 

conjunction for abandoned object detection. A tracking based method, where the 

abandoned object is detected by observing the object split is given in the method of [11]. 

Color and shape information of static foreground objects are fused for unattended object 

detection by the method of [28]. Method described in [33], which is based on the method 

of [25] makes use of two foreground images, one long-term and one short-term. If the 

object’s pixels are in the long-term foreground, but not in the short-term background, 

then this object is accepted as an abandoned object. In order to detect left objects in the 

scene, long-term and short terms foregrounds’ pixels are subtracted from each other. In 

this work we adopt this algorithm due to its robustness and lower computational 

requirement. While the processing power of GPU allows high computational requirement 
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algorithms to be run, a sufficiently robust algorithm with lower computational 

requirement allows supporting higher number of cameras and more preferable.  

Another algorithm that has been parallelized within this project is object tracking. Object 

tracking is required in video surveillance systems to detect cases such as intrusions, 

counter-flows and also used as input to suspicious behavior detection algorithms. In this 

work, we adopt an object correspondence based approach as it provides satisfactory 

results when the camera is stationary [10]. This approach also allows the object tracking 

algorithm to be designed together with the motion detection algorithm, since initial steps 

required for the object tracking can also be used for motion detection, eliminating the 

need for running a separate algorithm.  

In motion detection, the purpose is detecting the moving objects in the scene and tracking 

of these objects is not required. For motion detection, we utilize a number of steps of the 

object tracking algorithm. Connected component analysis is applied on the foreground 

objects’ pixels extracted using IAGMM algorithm in order to eliminate the noise and to 

connect the separate parts of an object. These operations are the post-processing 

operations in object tracking algorithm used to obtain accurate shapes of the tracked 

objects. 

In the proposed system, for abandoned object detection, object tracking and video 

motion detection algorithms, IAGMM algorithm is used for background estimation, since 

for these algorithms, a more accurate background image that can extract the foreground 

objects with inner pixels is required. For camera tamper detection algorithms, an 

algorithm with less accuracy is sufficient, hence background subtraction method 

proposed in VSAM, which has lower computational complexity, has been adopted for 

these algorithms. Whenever possible, the same estimated background image is reused in 

different algorithms for optimization purposes.  

III. CAMERA TAMPER DETECTION 

This section describes the camera tamper detection algorithms, namely covered camera, 

moved camera and out of camera detection. The section starts with description of the 

background subtraction algorithm as it is the basis of these algorithms. 

Background Subtraction 

Background subtraction is used to detect the non-moving parts in a video sequence and 

it is the primary step for the following camera sabotage algorithms. For the camera 

sabotage detection algorithms, as it is not necessary to segment the objects, a basic 

adaptive background subtraction method is sufficient. Hence an easier to implement and 

computationally less demanding algorithm is more preferable. For this purpose, we 

decided to use Video Surveillance and Monitoring (VSAM) algorithm which is specified in 

VSAM Final Report of [7]. The algorithm is adaptive and updates the background with each 

new frame to account for any changes in the background. The steps of the algorithm are 

shown in Figure 2. 
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Figure 2. VSAM background subtraction algorithm. 

To integrate background subtraction into the system, we have started with the optimized 

implementation developed in our lab [30]. In this implementation, the inputs of the kernel 

are integer pointers of current frame, previous frame and frame before previous frame. 

Outputs are integer pointers of array of adaptive thresholds values, background image, 

array that indicates the blocks that contain moving pixels, moving pixel array and 

foreground array. For optimization of memory access time, in this kernel, the 8-bit char 

pointers of frames are converted to 32-bit integer pointers, so that in each thread 4 char 

pixels are loaded at once. In the original implementation, moving pixels were extracted 

by comparing the current and previous two frames which is similar to foreground 

extraction. However, in our system, more precise moving object detection is necessary in 

order to disregard the parts that change frequently. In this study, this algorithm is 

modified using the moving pixel extraction algorithm described in the method of [30] and 

parallelized. Due to the embarrassingly parallel nature of this algorithm, each four pixel 

group is processed in a thread and equation 1 is applied in a loop for each pixel in each 

thread.  

𝑀𝑛(𝑥, 𝑦) =

{
 

 
𝑀𝑛(𝑥, 𝑦) +  ᵦ|𝐼𝑛(𝑥, 𝑦) − 𝐵𝑛(𝑥, 𝑦)|,

𝑖𝑓 (𝑥, 𝑦)𝑖𝑠 𝑚𝑜𝑣𝑖𝑛𝑔

𝑀𝑛(𝑥, 𝑦) − ᵧ|𝐼𝑛(𝑥, 𝑦) − 𝐵𝑛(𝑥, 𝑦) + 1|,

 𝑖𝑓 (𝑥, 𝑦)𝑖𝑠 𝑛𝑜𝑛 𝑚𝑜𝑣𝑖𝑛𝑔

 1 

In this equation𝑀𝑛(𝑥, 𝑦), 𝐼𝑛(𝑥, 𝑦) and  𝐵𝑛(𝑥, 𝑦) are nth moving pixel map, input frame 

and background frame respectively. As a result of this operation, image pixels 

corresponding to moving objects are marked. 

Another change from the implementation of [30] is the method of marking the blocks that 

contain moving pixels in the frame. As described in the method of [30] in camera out-of-
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focus detection algorithm, the frame is split into 8x8 blocks and the blocks that contain 

moving pixels are marked so that these blocks can be excluded from the summation of 

high frequency content. To maintain a list of moving blocks, a 2-D look up table with size 

of (frame width/8) x (frame height/8) is created. This process is illustrated in Figure 3. The 

input frame that is divided into 8x8 blocks is shown in Figure 3 (a). Figure 3 (b) shows the 

look-up table that keeps track of 8x8 blocks that contains at least one moving pixel. If in 

the frame’s 8x8 block there is at least one moving pixel, then the corresponding index for 

the same block in the look-up table is set to 1. Later, while the frame is processed, first 

the look-up table is checked and if according to this table, there are blocks that have 

moving pixels, these blocks of the frame are excluded from the high frequency calculation 

since they give unreliable information about high frequency content in the scene. 

 
Figure 3. If there is a moving pixel in an 8x8 block (a), that block is marked as moving (b). 

Covered Camera Detection 

For detection of covered camera, current frame (In)’s histogram and background image 

(Bn)’s histogram are calculated. If the view of the camera is obstructed by an object, values 

in a particular range in In’s histogram should be higher than the values in Bn’s histogram.   

For example, if the covering object is black, the black pixel value should be higher in 

histogram of In than in the histogram of Bn because of there is no black object being in the 

background image. Camera is said to be covered if both the equations 2 and 3 are satisfied 

[27]. These equations require calculation of histogram for 𝐼𝑛, 𝐵𝑛 and |𝐼𝑛 − 𝐵𝑛|. 

(𝐻max(𝐻(𝐼𝑛))−1(𝐼𝑛) + 𝐻max(𝐻(𝐼𝑛))(𝐼𝑛) + 𝐻max(𝐻(𝐼𝑛))+1(𝐼𝑛))

> 𝑇ℎ1 (𝐻max(𝐻(𝐼𝑛))−1(𝐵𝑛) + 𝐻max(𝐻(𝐼𝑛))(𝐵𝑛) + 𝐻max(𝐻(𝐼𝑛))+1(𝐵𝑛)) 
2 

∑𝐻𝑖(|𝐼𝑛 − 𝐵𝑛|) > 𝑇ℎ2∑𝐻𝑖(|𝐼𝑛 − 𝐵𝑛|)

𝑘

𝑖=1

32

𝑖=1

 3 

In these equations, Th1>1, Th2>1 and 0≤k<32 are thresholds which are selected according 

to the desired sensitivity of the algorithm. 

Figure 4 shows the steps of the covered camera detection algorithm. 
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Figure 4. Covered camera detection algorithm. 

For these operations, firstly the difference image |𝐼𝑛 − 𝐵𝑛| needs to be calculated. 

Calculation of difference image in GPU benefits from the parallel architecture as each pixel 

pair can be calculated independently. After obtaining the difference image, histograms 

are generated and equations 2 and 3 are applied to determine if the camera is covered. 

The histogram calculation is a high-cost operation because it iterates through all the pixels 

of the image. By parallelizing the histogram generation algorithm, covered camera 

detection can be speeded up. 

According to the test results, histogram calculation process gets slower when number of 

bins is fewer; compared to 32, 64 or 128-bin histograms, 256-bin histogram is more 

efficient to calculate.  In covered camera detection, 32-bin histograms are needed, so 

after generating 256-bin histograms, 32-bin histograms are generated by summing up the 

values corresponding to the bins in 256-bin histograms.  For example, to calculate 1st  bin 

in 32-bin histogram, values of 1st to 8th bins in 256-bin histogram are summed up. 

Moved Camera Detection 

In this algorithm, the purpose is to detect movement of the camera. It is expected that 

the background image starts to be updated with a change in the camera direction, 

resulting in a difference between the current and the delayed background. For this 

purpose, pixel by pixel difference of current and delayed background frames is calculated. 

Then, non-moving pixels are counted to obtain a proportion value of non-changing pixels 
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which is then compared with a threshold.  The threshold is adaptive and changes with the 

content of high frequency information in the image.  

For the threshold calculation, amount of high frequency information of the background 

image needs to be computed. Firstly, the FFT of the image is calculated and then in order 

to eliminate low frequency information, the image is convolved with a Gaussian kernel. 

For this purpose, FFT-based 2D convolution implementation of [24] is used. The resulting 

high frequency values of current background image are summed using a sum reduction 

kernel to benefit from parallelization. The moving areas detected using equation 1 and 

stored in moving pixel map Mn. These areas are masked out and excluded from the 

summation as the moving objects could increase the total amount of high frequency 

information. The result of this operation is used to update the threshold as explained in 

[27]. 

Equation 4 is used for calculation of proportion of moved pixels [27].  

𝑃 = {
𝑃 + 1, 𝑖𝑓 𝐵𝑛(𝑥, 𝑦) ≠  𝐵𝑛−𝑘(𝑥, 𝑦)

𝑃, 𝑖𝑓 𝐵𝑛(𝑥, 𝑦) =  𝐵𝑛−𝑘(𝑥, 𝑦)
 4 

Where P, Bn and  Bn-k are proportion of moved pixels, nth background frame and k frame 

delayed background frame respectively. For this calculation, firstly a separate thread is 

assigned to each pixel to calculate the binary difference of Bn and Bn-k. This binary image, 

which has value of 1 at locations where Bn and Bn-k are different and 0 otherwise, is passed 

to a sum reduction kernel to calculate P. Camera is said to be moved if P>Th3K where 0< 

Th3<1 is threshold value which increases sensitivity when it is closer to 0 and K is the total 

number of pixels. 

For sum reduction, the final optimized kernel in reduction implementation by CUDA is 

used [14]. The implementation is changed according to requirements of the Fermi 

architecture. Usually, threads in the same block do not need __syncthreads() for 

synchronization. But, in Fermi architecture, pointer with volatile qualifier is required for 

proper communication of threads in the same warp without __syncthreads() [21]. Thus, 

volatile qualifier should be used in order to write the values into the shared memory 

instead of registers.  

The result provided by the sum reduction kernel is given to another kernel to calculate 

the total sum. The resulting kernel’s dimension does not exceed 1024 in this work. Thus, 

another sum reduction kernel is created whose grid size does not exceed 1 and block size 

does not exceed 1024.   

Figure 5 shows the steps of the moved camera detection algorithm. 
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Figure 5. Moved camera detection algorithm. 

Out-of-focus Camera Detection 

In order to detect defocusing in cameras, high frequency content of the current frame and 

the background frame are compared, since in the case of defocusing, high frequency 

content of the current frame is expected to be lower than that of the background frame 

[27]. In the original algorithm, for high frequency calculation, Discrete Fourier Transform 

(DFT) is used. In this study, we utilize Discrete Cosine Transform (DCT) implementation of 

NVIDIA GPU Computing SDK 4.0 [22] and modify the algorithm accordingly. The frames 

are first divided into 8x8 blocks and blocks that contain moving pixels (calculated 

previously and stored in Mn) are excluded from the DCT calculation for optimization 

purposes.   

In the original implementation, memory is allocated inside the DCT function, requiring a 

new allocation for each frame. In our implementation, memory allocations are moved 

outside the function so that they are not done for each frame. Also, we parallelized 

CopyByte2Float and AddFloatPlane functions and combined them into a single kernel to 

eliminate passing of data between these kernels. These are functions that come with 

dct8x8 implementation of SDK [22]. CopyByte2Float function copy a byte array to float 

array. For proper conversion from byte to float -128.0f value is added to the float array in 

AddFloatPlane function. 
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Another alteration is using a custom 8x8 kernel instead of the quantization kernel used as 

default. We implemented a Gaussian kernel following DCT to obtain similar results to [27] 

where DFT is used instead. The aim of the window is eliminating low frequencies and 

retaining high frequency information to allow subsequent high frequency content 

calculation. Figure 7 shows the kernel used in this implementation which suppresses the 

low frequency content (at the top left of an 8x8 block) and retains high frequency content 

(at the bottom right of an 8x8 block).  

After multiplying Gaussian window multiplication, high frequency content is summed 

inside a kernel. In this kernel, moving block information (Mn) is also used to ignore high 

frequency data in a block that has moving pixel(s) since moving pixels can be misleading 

in detecting defocusing. In each thread, if the value in the Mn is not 1 (which means there 

is no moving pixel, so the high frequency information for this block is reliable), the 

frequency value in this block is summed in a loop and put into the corresponding index of 

an array. Later, the output of the kernel is summed using sum reduction and the result of 

the summation becomes high frequency data for that frame. This operation is applied to 

both current frame and background frame and then the high frequency data that comes 

from these frames are compared to detect defocusing [27]. 

Figure 6 shows the steps of the out of focus camera detection algorithm. 

 

Figure 6. Out-of-Focus detection algorithm. 
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Figure 7. New kernel that is created using Gaussian kernel values and replaces the quantization 

kernel in GPU implementation. 

IV. GAUSSIAN MIXTURE MODEL BACKGROUND 

SUBTRACTION 

In the system, we use the Improved Adaptive Gaussian Mixture Model (IAGMM) 

Background Subtraction. It is a pixel-based method and through a Bayesian decision, it is 

decided that whether the pixel belongs to the foreground or background [34]. 

For GPU implementation of GMM, the implementation that is introduced in [31] is used. 

We haven’t done any modifications to this algorithm for this work.  

Since each pixel is processed independently in GMM, the parallelization is done by 

assigning each pixel to a thread. Global memory holds the output frames and background 

model and constant memory holds the configuration parameters. In this implementation, 

shared memory which is faster than global memory is not used due to its limited capacity 

for storing input and output data for all threads in the block. 4 bytes of dynamic shared 

memory is used to hold common parameters for the block. 

V. ABANDONED OBJECT DETECTION 

For the abandoned object detection, we adopt the algorithm proposed by the authors of 

[25]. Figure 8 shows the steps of this algorithm. In this method, GMM is used for 

background modeling and two background models, long-term and short-term, are used. 

These background models are initialized with the same parameters except the learning 

parameter. The short-term background model is set a higher learning rate and the long-

term background model is et with a lower learning rate. By using these two foregrounds, 

an evidence image E is obtained using Equation 12. Evidence image is used for deciding 

whether a pixel is an abandoned object’s pixel. 

𝐸(x, y)  =  

{
 

 
𝐸(𝑥, 𝑦) + 1       𝐹𝐿(𝑥, 𝑦) = 1 ∧ 𝐹𝑆(𝑥, 𝑦) = 0

𝐸(𝑥, 𝑦) − 𝑘     𝐹𝐿(𝑥, 𝑦) ≠ 1 ∨ 𝐹𝑆(𝑥, 𝑦) ≠ 0

𝑚𝑎𝑥𝑒                 𝐸(𝑥, 𝑦) > 𝑚𝑎𝑥𝑒
0                            𝐸(𝑥, 𝑦) < 0 }

 

 
     12 

Where E(x,y) is the evidence image pixel value at (x,y), k is a decay constant and maxe  is 

the maximum value of a pixel in the evidence image. According to the equation 12, if a 

pixel belongs to a foreground object in the long-term background model and not in the 

short-term background model, the pixel value at the same coordinate is increased in the 

evidence image. The pixel is said to belong to an abandoned object if it reaches maxe and 
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evidence pixel value is not allowed to exceed this maximum limit. If the pixel does not 

belong to a foreground object in the long term background model and belongs to a 

foreground object in the short term background model, this pixel is said to belong to a 

moving foreground object and the respective evidence pixel value is decreased by k. The 

evidence pixel value is not allowed to take any value lower than 0. 

In GPU implementation, for background modeling, GPU implementation of GMM that is 

described previously is used. For detecting abandoned objects, a separate kernel which 

gets long-term, short-term  foregrounds is implemented. Output of this kernel is a binary 

image with abandoned objects’ pixels. In this kernel, in each thread, a  char pixel of the 

image is processed. In each thread, equatuon 12 is applied to each pixel, generating the 

evidence image . Then, detected abandoned object pixels are marked on the output 

image. Finally, noise reduction is done using connected components analysis and dilation 

operation is applied to mark the abandoned objects.  

Connected component labeling(CCL) implementation is based on Stava and Benes’ 

implementation [32] which requires input images to have sizes of powers of 2. This 

implementation is modified to work with other images sizes for this work.  In segment 

analysis part, we implemented component boundary calculation as a post processing step 

along with calculation of component sizes.  

Using the results of CCL region analysis, sizes and boundaries of components are 

determined. Sizes of the components are used to eliminate regions. In Figure 10, regions 

which have sizes smaller than 15 pixels(Region 0, 2 and 4) do not have bounding boxes. 

While AtomicMin() and AtomicMax() operations are used to determine the boundaries of 

connected components, AtomicAdd() operation is used for calculation of region sizes. 

 

Figure 8. Abandoned object detection algorithm. 
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Figure 9. Connected Component Labeling demo results. 

VI. OBJECT TRACKING 

The object tracking algorithm has been designed as a fully automatic algorithm and object 

initiation is handled using the extracted foreground information.  This algorithm starts 

with background subtraction using IAGMM. Since shadows may decrease the tracking 

accuracy, shadow removal is applied to the foreground frame. For this, the method that 

is described by [8] is used. According to this work, the hue and saturation of shadow pixels 

do not change significantly in the background while saturation of the foreground 

decreases. Thus, by comparing saturation, hue and value information of pixels that are 

classified as foreground, shadows are detected and they are considered as background. 

After that, noise is removed from the foreground frame. This operation is done using 

connected component algorithm where bounding box of the object, the number of pixels 

of each connected component and area of the object are calculated. Then using these 

information density of the connected components are calculated. A density threshold is 

defined and connected components that have lower densities than this threshold are 

eliminated. Detected bounding boxes are compared according to method in [4] to find 

the object correspondence between frames. The matching is done using the size and 

distance criteria. To detect occlusion and split the occlusion method proposed in [4] is 

used. Steps of this algorithm is shown in Figure 10. 

Finding the correspondence between the objects requires a synchronization barrier as it 

requires all the object feature data which makes efficient parallelization in GPU difficult. 

So this operation is executed on the CPU.  
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Figure 10. Object tracking algorithm. 

 

Video Motion Detection 

Video Motion Detection algorithm can be considered as a simpler version of object 

tracking whereby detected objects are not matched in consecutive frames. Hence 

optimization can be achieved by reusing the same intermediate outputs. In this method, 

moving objects are detected through foreground images extracted using GMM 

background. Moreover, since the only purpose is detecting moving objects on the frame, 

there is no need to apply pre-processesing such as dilation operation. Connected 

component algorithm, which restricts the detected objects according to the designated 

size, is sufficient for noise removal process. The output is the bounding box information 

of moving objects. 

VII. EXPERIMENTAL RESULTS 

Experiments were performed on a PC having Intel Core i7 CPU and 3.5 GB usable RAM. 

The GPU algorithms were tested with NVIDIA Tesla C2075. In time measurement tables, 

time measurements of CPU and Tesla C2075 are compared. Tests were run 10 times on 

both platforms and averaged to obtain final results. For calculating the run times of the 

individual algorithms, elapsed time from the launch of the kernel until its termination is 

measured. Similarly on the CPU side, the elapsed time is measured from the time the 

function is called until it terminates. In the calculation of total number of cameras 

supported, the system is simulated with camera streams. The supported camera is 

assumed the highest number of cameras at which the system still satisfies the real time 

constraint. x-axis in tables are illustrated in milliseconds in logarithmic scale. Also, gained 

speed-ups of each graphics board are specified. Speed-up is calculated by dividing CPU 
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time with GPU time. In figures below, the comparison of measured times for CPU and 

Tesla C2075 in different image sizes are illustrated. These tables and figures are given for 

each algorithm and the whole system when all algorithms are run. In the end, while 

processing the same algorithm, maximum numbers of cameras which a computer can 

hold are specified for CPU and Tesla C2075. CPU execution time increases linearly with 

the size of the image while GPU is more efficient with larger image sizes as better 

parallelization and hence higher occupation can be achieved. 

For Camera Tamper Detection and VSAM algorithms, the video named 

CameraCovered4_ByHand_25.avi in our dataset [5] is used. For tracking algorithms 

(Object Tracking, Video Motion Detection and Abandoned Object Detection), the video 

S1-T1-C, 3th Scene in [23] is used (Table 2). Sample results of each algorithm with the 

corresponding input images are shown in Figure 11. In this figure, on the left column, the 

inputs are shown. The outputs of the algorithms are shown on the right column. For the 

VSAM algorithm, the input is In which is the current image received from the camera, the 

algorithm updates the background and produces an updated background image Bn. For 

the moved camera detection algorithm, the inputs are background image and delayed 

background image, which are generated by the VSAM algorithm. In the figure current 

background image Bn and a background image delayed by 20 frames (Bn-20) are shown. 

The output of this algorithm is “camera moved” alarm. Camera covered detection 

algorithm gets the current image In and background image Bn as input and generates 

“camera covered” alarm as output. Out-of-focus camera detection algorithm gets the 

current image In and the moving pixel map generated by the background subtraction 

algorithm as input and generates “out-of-focus camera” alarm as output. GMM 

background subtraction algorithm has the same input and output structure with the 

VSAM background subtraction algorithm, i.e. gets In as input and generates updated 

background Bn as output. Abandoned object detection algorithm requires both a short 

term and long term background image generated by GMM algorithm and its output is a 

bounding box marking the location of the detected abandoned object. VMD algorithm 

takes the long term foreground image processed with shadow elimination algorithm as 

input and its output is bounding boxes marking the location of moving objects. The final 

algorithm, object tracking also uses the same shadow eliminated long term foreground 

image and its output is bounding boxes corresponding to moving objects and their trace 

information (i.e. their temporal position information). 

 Input Output 

VSAM In (current image) 

 

Bn (background image) 
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MCD Bn (background image) 

 
Bn-20(delayed background image) 

 

 
 
 
 
 
 

Camera Tampering  
(Camera Moved) Alarm 

 

CCD In (current image) 

 
Bn (background image) 

 

 
 
 
 
 

Camera Tampering  
(Camera Covered) Alarm 

 

OOFCD Mn (moving pixel map)

 

 
 

Camera Tampering  
(Camera Out of Focus) Alarm 
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In with moving area mask

 
GMM In (current image) 

 

F (foreground) 

 

AOD Fs (short-term foreground) 

 
FL(long-term foreground)

 

 
 
 
 
Bounding box of abandoned object 

 

VMD FL(long-term foreground) with 
shadow elimination 

 

Bounding box of moving objects 
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OT FL(long foreground) with shadow 
elimination 

 

Trace and bounding box of moving 
object 

 
Figure 11 - Sample input and output images for each algorithm. Dark gray areas in the foreground 

images mark the detected shadows.  

Table 1 – Videos used in testing. 

 Number of 
Frames  

Duration Dataset 

CameraCovered4_ByHand_25.avi 850 00:00:34 Camera Sabotage 
Discovery Test Videos 
[5] 

S1-T1-C, 3th Scene 2370 00:03:57 PETS2006 Dataset [23] 

Table 2 shows the measured time for all the algorithms both on the CPU and GPU for 

different image sizes. The results show that for all the algorithms, increasing image size 

results in higher speed up in GPU. The speed up rates vary significantly for different 

algorithms, for 1024x768 images, while the best speed up rate of 101.87 times is achieved 

for out-of-focus camera detection, the least speed up is for covered camera detection 

which is 3.63 times. Results for different algorithms and overall system are discussed in 

detail in the remainder of this section. 

For background subtraction, even in small images which have a size of 160x120, GPU is 

more than 4 times faster than CPU. As the images get bigger, CPU gets really slow. When 

the frame size gets 4 times of the previous size, CPU implementation gets 16 times slower 

and when the frame size reaches 640x480, the time to process a frame gets 8.25 seconds. 

But in GPU implementation, even in 1024x768 images, the time to process a frame is 0.34 

milliseconds and speed-up reaches 75.  

For covered camera detection, GPU is 2.12 and 3.63 times faster than CPU for 160x120 

and 1024x768 images respectively. This algorithm does not present satisfactory speed up 

rates in GPU as some parts the algorithm are run on the CPU due to their non-parallel 

nature and the atomicAdd() function used in histogram calculation. The speed of 

atomicAdd() function, which is used in histogram calculation, differs according to the 

architecture of graphics boards and it is known that the newer architectures –such as the 

NVIDIA Kepler architecture- have  substantially improved atomic operations. According to 

the test results the most of the time is spent in histogram calculation.  

Table 2 - Time measurements per frame (ms) and speed-up values for the various algorithms on 

CPU and GPU for different frame sizes. 
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Resolution 
/Algorithm 

160x120 320x240 640x480 1024x768 

 GPU 
(ms) 

CPU 
(ms) 

Speed-
up 

GPU 
(ms) 

CPU 
(ms) 

Speed-
up 

GPU 
(ms) 

CPU 
(ms) 

Speed-
up 

GPU 
(ms) 

CPU 
(ms) 

Speed-
up 

Background 
Subtraction 

0.12 0.56 4.67 0.15 2.07 13.8 0.20 8.25 41.25 0.34 25.50 75.00 

Covered Camera 
Detection 

0.83 1.76 2.12 1.22 3.45 2.83 3.03 10.18 3.36 7.65 27.77 3.63 

Moved Camera 
Detection 

1.28 3.19 2.49 1.69 13.27 7.85 2.87 62.03 21.61 4.94 177.64 35.96 

Out-of-Focus 
Camera Detection 

1.01 8.52 8.44 1.19 34.17 28.71 2.10 150.91 71.86 4.24 431.91 101.87 

GMM Background 
Update Algorithm 

0.07 1.14 16.29 0.12 4.54 37.83 0.37 17.5 47.30 0.90 44.80 49.78 

Video Motion 
Detection 

1.20 1.20 1.00 1.47 4.82 3.28 3.12 18.26 5.85 5.52 47.25 8.56 

Object Tracking 
2.15 2.95 1.37 3.12 10.01 3.21 7.13 36.64 5.14 16.10 94.45 5.87 

Abandoned 
Object Detection 

1.26 2.41 1.91 1.56 9.35 5.99 3.47 38.78 11.18 6.40 104.19 16.28 

For moved camera detection, while the GPU is 2.49 times faster than CPU at 160x120 

resolution, the speed-up reaches to 35.96 when the resolution is 1024x768.  

The most time consuming parts of the out-of-focus camera detection algorithm are the 

Fast Fourier Transfor (FFT) calculation and Gaussian window multiplication of FFT values 

followed by summing up high frequency content for each frame. Due the the efficiency of 

parallel FFT implementation on GPU and suitability of subsequent window multiplication 

and summing up operations, satisfactory speed-up values are achieved. For out-of-focus 

camera detection algorithm, at 160x120 resolution, the GPU has speed-up of 8.44. This 

increases with the increasing image resolution and speed-up of 101.87 is achieved at 

1024x768 resolution.  

For GMM background update algorithm, OpenCV CUDA implementation is used [31]. 

While there is 16.29 times speed up for 160x120 images, it reaches 49.78 for 1024x768 

resolution. 

The most time consuming parts of the VMD algorithm are GMM algorithm and connected 

component labelling algorithm. For VMD, while there is no speed up for 160x120 

resolution, the speed up of 8.56 is achieved for 1024x768. While the GMM algorithm has 

high speed-ups, overall VMD speed up is adversely affected due to the connected 

component labelling algorithm. 

Object tracking algorithm is mostly dependent on the GMM algorithm, connected 

component labelling and object correspondence matching. Due to the serial nature of 

object correspondence matching, this operation is done on the CPU. Similar to the VMD, 

object tracking performance is also adversely affected by the connected component 

labelling.  

Abandoned Object Detection (AOD) algorithm uses two foreground images (obtained 

using short and long-term backgrounds). Hence, this process takes significant time on CPU 
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due to the process of updating two background models. GPU version benefits from the 

faster GMM implementation.  

Total Measured Time 

Total measured time is the time elapsed when all 6 detection algorithms (Covered Camera 

Detection, Moved Camera Detection, Out-of-Focus Camera Detection, Video Motion 

Detection, Abandoned Object Detection and Object Tracking) run concurrently. For this 

measurement, Camera Tamper Detection (CCD, MCD, OOFCD) and VSAM algorithms are 

run once a second (once every 25 frames) and GMM algorithm is run for each frame to 

keep an updated reference background. Object Tracking algorithm is run at 5 

frames/second which is sufficient to obtain trail of a moving person for most video 

surveillance scenarios. As can be seen in Figure 12, tor 160x120 images, GPU is 4.44 times 

faster than CPU. As the image resolution gets higher, the speed-up increases and speed-

up of 21.82 is achieved at 1024x768 resolution. Figure 13 shows the total number of 

cameras that can be supported in real-time when all the algorithms run concurrently for 

all the cameras. In the CPU case, each camera is processed by a separate thread and when 

there is higher number of cameras than the number of threads that can be processed 

concurrently by the processor, there will be context switches.  The system has been 

simulated with camera streams fed to the corresponding threads so the number of 

cameras supported takes the context switch and other operating system overheads. In 

the GPU version, images are processed in the order of their arrival regardless of their 

camera number. In GPU version, parallelization is done at image level. With GPU, in the 

smallest image size (160x120) 56.42 cameras can be processed at the same time 

compared to 12.7 cameras with CPU (Figure 13). At 1024x768 resolution, the GPU is able 

to process 7.1 cameras in real-time while CPU fails to process any cameras in real time.  

 

Figure 12. Speed up comparison between GPU and CPU implementations of overall system. 
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Figure 13. Total number of supported cameras on CPU and GPU in real-time when all the 

algorithms are run concurrently. 

VIII. CONCLUSION  

In this study, implementation of a real-time multi camera video analytics system on GPU 

is described. The system is comprised of camera tamper detection, motion detection, 

abandoned object detection, and object tracking algorithms. These components are 

based on background estimation and assumes that the cameras are static and the camera 

field of view should include some static areas for reliable background estimation. 

As the system does not bring any heavy load to the CPU, the remaining CPU resources can 

be used for other purposes such as system I/O and integration, user interface, video 

recording as well as running video analytics.  

Higher speed-up values could be achieved with larger images sizes in GPU as better 

parallelization and higher occupation of GPU resources can be achieved, while the speed-

up of the overall system is 4.44 at 160x120 resolution, this increases to 11.55, 18.88 and 

21.82 for 320x240, 640x480 and 1024x768 resolution respectively. With the ever 

increasing image resolution used in the systems, it is expected that the benefits of the 

GPU will be more pronounced in the future. 

As the cameras are processed independent of each other, the system is scalable and with 

the GPUs having higher computational throughput, the number of cameras that can be 

processed will also be increased without any development effort. This independency also 

enables multiple GPU configurations in a single computer where higher number of 

cameras can be supported on a single computer.    

For camera tamper detection algorithms, the optimization results are satisfactory. 

However, for the algorithms that use CCL which are object tracking, abandoned object 

detection and video motion detection, the obtained optimization is lower than expected. 

Therefore, CCL implementation could be improved for better performance gain in these 

algorithms. 
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