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Abstract The recently proposed TLD (Tracking-Learn-
ing-Detection) method has become a popular visual track-
ing algorithm as it was shown to provide promising long-
term tracking results. On the other hand, the high com-
putational cost of the algorithm prevents it being used at
higher resolutions and frame rates. In this paper, we de-
scribe the design and implementation of a heterogeneous
CPU-GPU TLD (H-TLD) solution using OpenMP and
CUDA. Leveraging the advantages of the heterogeneous
architecture, serial parts are run asynchronously on the
CPU while the most computationally costly parts are
parallelized and run on the GPU. Design of the solu-
tion ensures keeping data transfers between CPU and
GPU at a minimum and applying stream compaction
and overlapping data transfer with computation when-
ever such transfers are necessary. The workload is bal-
anced for a uniform work distribution across the GPU
multiprocessors. Results show that 10.25 times speed-
up is achieved at 1920x1080 resolution compared to the
baseline TLD. The source code has been made publicly
available to download from the following address:
http://gpuresearch.ii.metu.edu.tr/codes/.

Keywords object tracking · heterogeneous CPU-GPU
Implementations · real-time · CUDA

1 Introduction

Real-time tracking of objects in video is an important
problem in various domains such as robotics, defense
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and security. While there are many methods in the lit-
erature, most of these are based on short term tracking
which often fails if the object is occluded, leaves the field
of view and re-enters, changes its appearance rapidly or
goes through a large displacement between consecutive
frames. In most cases, tracking algorithms need to run
in real-time, further imposing algorithmic and compu-
tational limitations. Recently proposed TLD (Tracking-
Learning-Detection) method [14] aims long term track-
ing by integrating learning and detection components
into the tracker. Tracking and detection are decoupled
for robustness. The tracker recursively tracks the object
based on its location in the previous frame. The learner
continuously learns the appearance of the object to ac-
count for the changing appearance. The detector aims
to detect the object when it reappears after it gets oc-
cluded or gets out of the field of view. TLD has been
shown to have promising long-term tracking results and
it is algorithmically suitable for real-time applications.
On the other hand, the high computational cost of the al-
gorithm prevents running it at higher resolutions/higher
frame rates and prohibits running multiple instances of
the algorithm for multi object tracking. Hence, a faster
implementation of the algorithm is important to: (i) in-
crease the resolutions for which the algorithm can run in
real-time, (ii) allow running multiple instances of the al-
gorithm to support tracking multiple objects, (iii) allow
running the algorithm at higher accuracy: Tuning the al-
gorithm parameters for higher tracking accuracy requires
higher computation power, this results in a trade-off be-
tween object tracking quality and processing speed.

Most modern computing platforms have both CPUs
and GPUs. CPUs are good at executing branched in-
structions, typically have higher clock frequencies and
larger cache sizes. On the other hand, while GPUs are
not optimized for divergent operations and typically have
lower clock frequencies, they have higher number of pro-
cessing cores. Taking these different properties of CPUs
and GPUs into account, an optimal solution from a data
processing point of view would run serial parts or parts
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requiring branching on the CPU and highly parallel or
throughput oriented parts on the GPU. On the other
hand, such a heterogeneous solution requires transferring
partially processed data between CPU and GPU which
brings additional overhead that would not be present in
a pure CPU or GPU implementation.

In this work, we describe the design and implemen-
tation of a heterogeneous solution, Heterogeneous-TLD
(H-TLD), which aims to use both CPU and GPU with
high utilization. The proposed optimization scheme dy-
namically calculates the run-time parameters with re-
spect to the GPU resources. This allows running the al-
gorithm effectively on GPUs having different hardware
capabilities. Particular attention is given in design to
minimize the data transfers between the CPU and GPU
and applying stream compaction whenever such trans-
fers are inevitable. On the GPU side, memory optimiza-
tions include design of the data structures to allow coa-
lesced access and use of shared memory whenever suit-
able. Load balancing between the GPU processing units
is achieved by the proposed grouping structure of the
data.

The rest of the paper is organized as follows. We first
summarize the related work in Section 2 and then give
an algorithmic description and computational analysis
of TLD in Section 3. This is followed by the description
of the proposed H-TLD framework design and optimiza-
tions in Section 4. We analyze the performance of the
algoritm, compare its performance against the baseline
TLD and state-of-the-art in Section 5 and finish with the
concluding remarks in Section 6.

The source code and the different resolution videos
used for benchmarking has been made publicly available
to download: http://gpuresearch.ii.metu.edu.tr/codes/.

2 Related Work

A feature tracking and matching based algorithm is de-
scribed in [24]. The implementation is based on OpenGL
and Cg making it difficult to adapt to newer generation
devices. GPU implementation of a particle filter based
tracker is described in [8]. It is shown that the GPU ver-
sion is more effective when the particle count is higher
and it can achieve more than 12 times speed-up com-
pared to the multi-core CPU implementation.

A video analytics system targeting video surveillance
applications is described in [10]. As part of this work,
a tracking algorithm was optimized on GPU. However,
due to its target application field, tracking is based on
background subtraction and assumes that the camera is
static. Another background subtraction based algorithm
is described in [15]. The proposed method achieves real-
time performance on high-resolution videos for moving
object detection, however it only involves detection and
no object tracking method is present.

Acceleration of a boosting based face tracking algo-
rithm, which is reported to achieve 500 frames per sec-
ond on GPU is given in [11]. A particle filter based face
tracking algorithm developed on a heterogeneous CPU-
GPU environment is described in [17]. The latter two
particularly target face tracking and as such, they are
not general purpose tracking algorithms. Most of the
solutions aiming to accelerate object tracking focus on
analyzing and improving the optical flow part of the
tracking algorithms; rather than focusing on the whole
problem [19] [18] [20]. The method proposed in [18] con-
sists of feature detection and optical flow modules based
on pyramidal Lucas-Kanade (LK) tracker [5] running on
GPU. They compared their work with OpenCVs feature
detector, tracker implementation and showed improved
performance when some parameters were tuned. In [20],
CUDA was used to accelerate the LK optical flow algo-
rithm on GPU.

These aforementioned methods in the literature can
be classified as short term tracking methods. Short term
tracking often fails if the object is occluded, disappears
from the field of view and reappears, changes its appear-
ance rapidly or goes through a large displacement be-
tween consecutive frames. The recently proposed TLD
method [14] has become a popular visual tracking al-
gorithm as it made robust long-term tracking possible
by including learning and detection in the loop. A C++
based implementation of TLD having an extended ob-
ject detection cascade and using alternative features is
described in [21]. The processing speed is improved by
excluding the image warping step in the learning and the
object detection cascade. This modification increases the
likelihood of falsely eliminating true object candidates.
While there has been a recent interest in GPU imple-
mentations of tracking algorithms, our literature survey
reveals that there are only two GPU based implementa-
tions of the TLD algorithm [4] [23]. Implementation in
[4] is a direct porting of the CPU version and it does
not involve design and optimization with regards to the
particulars of such a platform. In [23], the detection part
of TLD is ported to run on GPU, however no specific
design or optimization is performed for this platform.
Another point to note is that while CPU-GPU heteroge-
neous processing has a notable potential, there is limited
amount of work leveraging the advantages of both CPU
and GPU in a heterogeneous setting. Hence our motiva-
tion in this work is to design and implement the state-of-
the-art TLD algorithm to make effective use of GPU and
benefiting from a CPU-GPU heterogeneous architecture.
As a fundamental design principle, we refrain from any
algorithmic modifications which might improve the pro-
cessing speed at the expense of the tracking performance
and focus on the baseline TLD algorithm [14].

http://gpuresearch.ii.metu.edu.tr/codes/
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3 Algorithm Description and Analysis

In this section, we first give a general outline of the TLD
algorithm and its main components. Then we analyze
these components in more detail to help with the design
decisions on the heterogeneous platform.

3.1 Tracking-Learning-Detection (TLD) Algorithm

TLD is composed of 3 main components; tracking, learn-
ing and detection. Tracker and detector run in parallel
and the object location is estimated by the consensus of
both. Aim of the learning component is to adapt the ob-
ject model over time by using feedback from both tracker
and detector. An overview of the TLD algorithm is pro-
vided in Algorithm 1.

Tracking is the process of predicting the displacement
of each previous reliable point (pixel location) enclosed
by object’s Bounding Box (BB); and measuring the re-
liability of these newly computed displacement vectors
using forward-backward tracking and NCC (Normalized
Cross Correlation) scores [16]. All points with highly con-
fident displacement vectors are the output of the tracking
module.

Detection is the process of deciding upon whether
the object is still in the field of camera’s view and if
not, detecting its presence when it re-appears. Its clas-
sifier is based on random forests [7]. Since TLD is a
semi-supervised learning method; the classifier is initially
trained with the labeled data. Then it starts learning
different appearances of the object as each new frame is
processed. Detector employs such a classifier for finding
BBs where the object may potentially exist. Output of
detection module is the confidence values for all BBs.

Learning component exploits the notion of P-N Ex-
perts which restrict the labeling of data [12]. The experts
use output of the tracker in order to evaluate candidate
BBs with high confidence values against a structural con-
straint. P-expert considers trajectory that has been built
up by the tracker so far, it calculates the euclidean dis-
tance between each candidate BB and the trajectory. If
the measured distance is less than a certain predefined
threshold value and the BB was previously labeled as a
negative patch by the classifier; then P-expert relabels it
as positive. On the other hand, N-expert relabels a BB
as negative provided that it had been classified as a pos-
itive patch but failed the structural constraint. Finally,
these correctly relabeled patches are used to train the
detector’s classifier.

3.2 Analysis of the Algorithm

In this section, the most time consuming computational
components of the TLD algorithm are defined. Then ex-
ecution times of these components are further analyzed

Algorithm 1 TLD Processing Overview

procedure tldProcessFrame(I)
. Step#1 Compute optical flow. Return bound-

ing box (BB) found by the tracker
tBB ← tracker(frame[I − 1], frame[I])
. Step#2 Run variance filter ->Ensemble Clas-

sifier ->Nearest Neighbor operations in or-
der. Return bounding boxes (BBs) found by
the detector

dBBs← detector(frame[I])
. Step#3 Run the integrator in order to find

the trajectory
cBBs← cluster(dBBs)
BBs← Find clusters that have higher conf than tBB′s
if number of BBs = 1 then

Re-initialize the tracker’s trajectory to this BB
else

closeBBs← tBB, dBBs with the conf > th
curBB ← Adjust the tracker’s trajectory using

closeBBs
end if
. Step#4 Run learner. Generate posi-

tive/negative patches using the newly
found BB(trajectory), and retrain the
ensemble classifier

if trajectory is within the frame boundary then
learn(curBB, frame[I])

end if
end procedure

in detail to identify the performance bottlenecks. While
there are also other components of the algorithm, their
execution times are insignificant compared to the ones
given in Table 1. Therefore, they were not taken into
consideration in this computational analysis.

Main computational components of tracking are Lucas-
Kanade (LK) optical flow and Normalized Cross Cor-
relation (NCC) calculation. LK optical flow calculation
estimates frame-to-frame optical flow as in median flow
tracker [13]. It is run twice per frame for computing op-
tical flows in forward and backward directions respec-
tively. In the first run, it predicts positions of the track-
ing points in the next frame corresponding to the ones
in the previous frame. Then in the second run, it tries
to find out where these predicted points can be repo-
sitioned on the previous frame. Similarity measure be-
tween small rectangular regions surrounding these pre-
dicted locations and their associated original tracking
points, is calculated using NCC [16]. Tracking points
with results lower than a predefined threshold value are
considered to be unreliable and eliminated.

Learning consists of patch warping, pattern genera-
tion, random forest update and BB overlap computation.
Patch warping generates different variants of a positive
patch for scale and rotational invariancy. After tracker
estimates the position of the next BB of the object, P-N
experts decide on whether BBs detected by the detector
belongs to the object or not. Using this information, it re-
trains the ensemble classifier by generating positive and
negative patches. Random forest is updated using these
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patterns. As for BB overlap computation, it calculates
the overlapping area between any two BBs.

Detection module can be subdivided into the follow-
ing computational components: total recall computation,
integral image calculation and image blurring. Total re-
call computation calculates a confidence value for each
BB. Integral images are necessary to compute patch vari-
ance for each BB in an efficient way. Lastly, image blur-
ring is the preprocessing step of each frame and smooths
out the undesired details and noise.

In order to analyze the computational cost of compo-
nents mentioned above, we ran the algorithm with differ-
ent video resolutions (480x270, 960x540 and 1920x1080).
Different resolution video sequences have been obtained
from the same original 1920x1080 video having 464 frames
by downsampling. As a result they have identical con-
tent. The experiments were performed on a test platform
having a Intel i7 4770K 3.5 GHz 4 core CPU with 32GB
RAM and running Windows 7 64-bit. Test GPU was a
NVIDIA Tesla K40c of compute capability 3.5 with 15
streaming multiprocessors, each having 192 computing
cores (in total of 2880 cores). It has 2 asynchronous copy
engines and its Hyper-Q was enabled.

We analyzed the execution time per call as well as
the total execution time of each component. Although
how many times a component is called depends on the
characteristics of the test video, the total execution times
still give an indication of the most time consuming com-
ponents. The results are reported in Table 1 as “time per
call” and “time for the whole sequence” respectively.

In Figure 1, the horizontal bar illustrates execution
times for each computational component. In this sce-
nario, original-TLD implementation was tested on the
1920x1080 resolution test video.

It can be inferred from Table 1 and Figure 1 that
the most computationally expensive operations are “to-
tal recall computation”, “image blurring”, “LK optical
flow calculation”, “patch warping” and “integral image
computation” in descending order. All the remaining op-
erations combined takes less time than the integral im-
age computation which is the least time consuming one
among these aforementioned components. So we concen-
trate on these 5 components and analyze them in more
detail with an aim to implement in a heterogeneous con-
text.

3.2.1 Total Recall Computation

Total recall computation is used in the detector mod-
ule and it is the most time consuming component as
highlighted by the execution time analysis. It runs an
exhaustive search for the object using a sliding window
approach. First, a series of BBs spanning the whole im-
age are created at the initialization. The size of the BB
is determined by the tracked object size. Then BB prop-
erties are saved into a data structure on both CPU and
GPU memories to be used in the subsequent steps. A

series of computationally costly sub-tasks are executed
for each BB: patch variance computation, feature com-
parison, and confidence value calculation. The best can-
didate for the object is determined by the result of these
computations.

Number of BBs depends on the image resolution and
the object size. For a QVGA frame (320x240) and an
object BB with an initial size of 25x42, 29855 BBs are
required to scan the entire frame. This brings a high
computational cost and the cost increases proportional
to the image resolution. Due to the independent nature
of calculations for each BB and high number of BBs,
this part is suitable to parallelize and implement on the
GPU. Hence we decided to run this part on the GPU.

3.2.2 Image Blurring

Image blurring is used in the detector module. It is a very
common operation in various image and video related
tasks and it was shown that considerable gains could be
obtained in GPU implementations [6]. So we decided to
run this part on the GPU. As there are already avail-
able optimized implementations, we decided to use the
OpenCV implementation [6].

3.2.3 LK Optical Flow Calculation

LK optical flow is used in the tracker module which is
based on Median Flow Tracker (MFT) [13]. In MFT,
pyramidal LK optical flow is calculated for all feature
points of the object. Optical flow is called twice for each
image pair; first in the forward and then in the backward
direction. This part lends itself well for a GPU implemen-
tation as it can be implemented in a data parallel fashion
and there are a large number of data points. As in the
case of image blurring, there are already available opti-
mized implementations and we decided to use OpenCV
implementation [6].

3.2.4 Patch Warping

Patch warping is a part of the learning component. The
other parts of the learning component are pattern gen-
eration, random forest update and BB overlap calcula-
tion. These components do not take significant process-
ing time as they involve calculation for a limited num-
ber of BBs and learning is invoked intermittently. As
such, implementation of these parts on GPU were con-
sidered infeasible. Processing these parts on the CPU
while processing patch warping on the GPU necessitates
moving large amounts of data (i.e. warped patches) be-
tween CPU and GPU. As a result, we decided to keep
the entire learning component on the CPU.
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Table 1 Time measurements for individual components for different resolutions

Component Time per call (ms) Time for the whole sequence (ms)
480x270 960x540 1920x1080 480x270 960x540 1920x1080

Tracking
LK Optical Flow 1.10 4.28 17.52 509 1982 8112
Normalized Cross Corr. 0.62 0.63 0.77 287 292 357

Learning
Pattern Generation 0.01 0.02 0.08 32 65 258
Random Forest Update 0.44 1.20 1.89 141 386 608
Patch Warping 0.08 0.23 1.27 326 938 5180
BB Overlap 0.02 0.06 0.27 35 104 467

Detection
Total Recall 5.93 20.40 62.50 2752 9466 29000
Integral Image 0.27 1.10 4.56 126 510 2116
Image Blurring 1.69 6.51 23.65 782 3021 10974

 

0 10000 20000 30000 40000 50000 60000

1

Execution Time (ms)

TL
D

Total Recall Computation Image Blurring LK Optical Flow Calculation
Patch Warping Integral Image Computation Random Forest Update
BB Overlap Computation Normalized Cross Correlation Pattern Generation

Fig. 1 Execution times for 1920x1080 video for different components in descending order

3.2.5 Integral Image Computation

Integral image computation is a part of the detector
module. This task is highly parallelizable and suits well
to the GPU architecture. Total recall computation step
which was decided to be implemented on GPU as men-
tioned above, follows it and uses its output. Implement-
ing integral image computation on the GPU also pre-
vents moving data back and forth between GPU and
CPU, hence we decided to implement this component
on the GPU using [2].

As a result of this analysis we decided to move the total
recall computation, image blurring and integral image
computation components to the GPU. Albeit being the
third most costly component, we decided to keep patch
warping on the CPU as it needs to interact with the other
components of the learning which are to be kept on the
CPU side. In the next section, we give a detailed descrip-
tion of the design, implementation and optimization of
these components.

4 H-TLD Framework Design

An important advantage of heterogeneous computing is
its potential to utilize the resources efficiently by keeping

both CPU and GPU occupied at the same time. Tracking
and detection modules of TLD run independent of each
other; i.e. they do not need to share any data until the in-
tegrator receives results from both to estimate the object
position. This allows overlapping of various components
on CPU and GPU. In addition, multi-core CPUs may be
exploited in order to perform tasks that are not preferred
to be executed on GPUs for particular reasons (such as
serial operations and parts of the algorithm which re-
quire moving data back and forth between CPU and
GPU). Moreover; some critical parts of the TLD algo-
rithm (particularly its detector module) can be designed
to overlap data transfers between CPU/GPU and kernel
executions.

Figure 2 shows an overview of the heterogeneous H-
TLD framework. The main design considerations of the
H-TLD framework are (i) executing highly parallel parts
on the GPU while executing serial operations on the
CPU, (ii) keeping the data transfers between CPU and
GPU at a minimum, (iii) applying stream compaction
and overlapping data transfers with computation when-
ever possible, (iv) balancing the load for a uniform work
distribution on the GPU multiprocessors. In the remain-
der of this section we describe the design of the individual
components in accordance with these design considera-
tions.
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Fig. 2 H-TLD heterogeneous CPU-GPU software frame-
work

4.1 Total Recall Computation

Total recall computation is designed to run on both pro-
cessing units to efficiently utilize both CPU and GPU
and it has 4 separate subcomponents executed in the
order given below:

• Patch variance computation (GPU),
• Stream compaction (GPU),
• Random forest index calculation (RFI) (GPU),
• Confidence calculation (CPU).

The data organization concepts used in paralleliza-
tion of total recall computation are described below and
illustrated in Figure 3.
Scale Level : BBs are generated at different scaling fac-
tors for scale invariance.

Scan Line: Top and bottom lines of a group of BBs align
and they lie within a single row of an integral image,
we call such a row a scan line. Note that, one scan line
may form top and/or bottom borders of BBs from differ-
ent scale levels. This property will be used to reduce the
number of scan lines to be read into the shared memory.
Scan Line Pair : A pair of scan lines encompasses top
and bottom borders of a group of BBs at a given scale
level.
Cluster : A cluster consists of a number of scan-line pairs
arranged for load-balancing and this is the actual logical
unit to be run by the GPU thread blocks. Each CUDA
block is responsible for processing one cluster per invo-
cation. Clusters are ensured to have approximately the
same number of BBs for the purpose of load-balancing
as detailed later in this section. The number of scan-line
pairs in a cluster is limited by the shared memory size
of the particular device.

Since GPU resources are limited, we compute the
maximum number of BBs that can be processed on GPU
cores at a single kernel invocation. As a result, there
could be a number of asynchronous invocations. The
number of kernel calls are calculated when the H-TLD
object is initialized with respect to the object’s BB size,
video resolution, and GPU’s hardware capabilities. This
allows run-time optimization for a specific GPU by mak-
ing effective use of its resources. Pseudo-code shown in
Algorithm 2 summarizes this calculation. At Step#1, the
total number of threads per each CUDA block is cal-
culated with respect to the two hardware constraints:
(i) maximum number of registers reserved for a block,
(ii) maximum number of threads that can run concur-
rently on a single streaming multiprocessor.

At Step#2, the maximum shared memory size re-
quired to store scan-line pairs for each block is calcu-
lated. Each time a new group of BBs spanning a partic-
ular scan-line pair is added in the while loop as shown
in algorithm 2 (hence more BBs will be processed at a
time resulting in higher occupancy), shared memory con-
sumed by any block will increase as well; until it reaches
its maximum limited by the hardware. Although, clusters
may use varying sizes of shared memory this parameter
should be predefined for all blocks within a kernel. Thus,
all blocks allocate the same amount of memory regard-
less of how much they require. After these two steps are
completed, occupancy should be optimized as described
in Step#3 in 2.

4.1.1 Patch Variance Computation

Patch variances of candidate patches (BBs) are calcu-
lated using integral and squared integral images. Inte-
gral images enable fast calculation of variances. Then,
the patches having low variances (compared to the vari-
ance of the target object patch) are eliminated as these
are not considered to be object candidates. Patch vari-
ance calculation was implemented on the GPU utilizing



Heterogeneous CPU-GPU Tracking-Learning-Detection (H-TLD) for Real-Time Object Tracking 7

BBi BBi+1 BBi+2

Groups of 
Overlapping 

BBs from 
Scale-Leveln 

and 
Scale-Leveln-1 
respectively

Groups of 
Overlapping 

BBs from 
Scale-Leveln 

and 
Scale-Leveln-1 
respectively

. . . . . . . . . . . . . . . . . . . . . 

T0,0 T1,0 T2,0 Tj,0

..
..

..
..

..
..

..

Threads of the Blockk compute patch 

variances of BBs in clusterp

Threads of the Blockk compute patch 

variances of BBs in clusterp

Threads of the 
Blockk read a 

Scan-Line 
Collaboratively

Threads of the 
Blockk read a 

Scan-Line 
Collaboratively

A Scan-Line 
might be shared 

by multiple 
Scan-Line Pairs

. . . . . . . . . . . . . . . . . . . . . 

T0,0 T1,0 T2,0 Tj,0

. . . . . . . . . . . . . . . . . . . . . 

T0,0 T1,0T2,0 Tj,0

. . . . . . . . . . . . . . . . . . . . . 

T0,0 T1,0 T2,0 Tj,0

. . . . . . . . . . . . . . . BBi+j . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . 

A cluster may 
have groups of 

BBs from 
different scale 

levels

A cluster may 
have groups of 

BBs from 
different scale 

levels
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

BBi+j+1

. . . . . . . . . . . . . . . . . . . . . 

Fig. 4 A cluster and its mapping to GPU multi-threading concepts

Algorithm 2 Calculating number of asynchronous ker-
nel invocation

procedure calcNumofKernelInvoc
. Step#1 Calculate maximum number of

threads
per block(numofTPB)

Maximize numofTPB wrt
“maximum register per block” constraint

Maximize numofTPB wrt
“maximum number of resident threads per
multiprocessor” constraint

. Step#2 Calculate required shared-memory
size (sms)

Calculate total number of scan line pairs
(totalNumofSLP )

clusterSize← 1
sms← 0
while sharedMemPerBlock > sms

AND clusterSize < totalNumofSLP do
Compute required sms
clusterSize← clusterSize + 1

end while
. Step#3 If occupancy is too low

while occupancy < threshold
AND clusterSize ≥ 2 do
clusterSize← clusterSize− 1
Compute required sms
Calculate activeWarps wrt new “sms”
occupancy ← activeWarps/maxActiveWarps

end while
. Note that each cluster must be processed by

a single CUDA block
numofClusters← totalNumofSLP/clusterSize
Calculate max number of blocks per grid(numofBPG)
numofInv ← numofClusters/numofBPG
return numofInv

end procedure

A Scan-
Line Pair

A Scan-Line

A BB from 
Scale Leveln

A BB from 
Scale Leveln-1

Fig. 3 Data organization for patch variance computation

the shared memory. It has the following steps: (i) read
the scan-line pairs into the shared memory, (ii) compute
patch variance for each BB either based on integral im-
age or squared integral image, (iii) threshold each vari-
ance and assign 0 or -1 for above and below threshold
respectively to use at the stream compaction stage.

The mapping between the GPU multi-threading con-
cepts and the data organization concepts (scan line, scan
line pair, etc.) for patch variance computation kernel are
described below and illustrated in Figure 4.

• Each thread in a block reads various pixel locations
on scan lines either from the integral image or from
the squared integral image into the shared memory
collaboratively.

• Patch variance computation of a BB is done by a
single thread in the block. However, a thread may
process more than one BB in a cluster.
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For an effective implementation of this computation,
data needs to be partitioned in a way to ensure uniform
work distribution across the threads, and needs to be
organized for parallel implementation. This is an impor-
tant consideration for an effective GPU based implemen-
tation.

During patch variance computation, ideally, BBs from
different scale levels should be grouped to ensure the
clusters to have the same number of BBs to be processed.
Exploitation of spatial locality of BBs is also important,
as a careful design would allow use of scan-lines read into
shared memory by higher number of BBs during the pro-
cess.

Total number of BBs in a scan-line pair at a scale
level n is calculated as in Equation 1

f(n) =
W − αnw

βαnw
(1)

where, W is the width of video frame, α is the base scale
level, β is the shifting factor in the range of (0, 1] and
w is the width of initial bounding box of the tracked
object. Note that BBs within a particular scan-line pair
must be processed by a single CUDA block. Process-
ing BBs in the same order as they are processed on the
host side prevents proper load balancing on GPU. This
is illustrated in Figure 5 (top). As computation proceeds
from the left to the right, each scan-line pair and the
BBs located within it at a certain scale level are located
contiguously in the memory. Thus, blocks of comput-
ing kernels would start processing fewer numbers of BBs
compared to the earlier ones at higher scale levels, re-
sulting in many processing units to become idle after a
while. To enable distribution of similar amounts of work,
a pre-processing step reorders the data as illustrated in
Figure 5 (bottom) where BBs from different scale levels
are grouped together.

Use of integral images makes it possible to compute
the patch variances for a specific group (horizontal neigh-
borhood) of BBs by only using the scan lines spanning
them. As a result, patch variance can be calculated by
reading only these scan lines into the shared memory.

A pixel located on a single scan-line may be used
by multiple threads in a block while patch variances are
being computed. There are two cases where this might
occur: (i) As illustrated in Figure 4, scan-line pairs may
share a common scan-line (the one that spans their bot-
tom and top borders respectively). Those BBs from dif-
ferent scale levels are likely to be processed in the same
CUDA block. (ii) Neighboring BBs in a scan-line pair
overlap. As a result, these BBs share most of the data
resulting in multiple accesses to the same pixels.

As it can also be seen from the pseudo-code in Al-
gorithm 3; patch variance for a BB is computed in two
iterations due to the limited size of the shared mem-
ory. Thus, the scan-lines for integral image and squared-
integral image are read into the shared memory sepa-
rately, so that more BBs could be processed per invoca-
tion within a single CUDA block. Loading higher number

Scale 
Level0

Scale 
Level1

Scale 
Level2

Scan Line 
Pair 0

Scan Line 
Pair 1

Scan Line 
Pair 2

Scan Line 
Pair 3

Scan Line 
Pair 0

Scan Line 
Pair 1

Scan Line 
Pair 2

Scan Line 
Pair 0

Scan Line 
Pair 1

Cluster0 Cluster1 Cluster2

Fig. 5 Original memory ordering which causes load imbal-
ance in processing (top), proposed BB ordering to achieve
load balancing (bottom)

of scan-lines into the shared memory results in a higher
number of BBs to be processed per single kernel invoca-
tion. This leads to fewer number of kernel invocations,
reducing the potential overhead of multiple kernel invo-
cations.

Furthermore, threads do not read contiguous memory
locations during the computation, which has a negative
impact on the performance due to uncoalesced global
memory access. Reading scan-lines into shared memory
also eliminates the uncoalesced access problem.

4.1.2 Stream Compaction

BBs which fail the variance test are eliminated and the
remaining are passed onto the next stage. However, this
results in non-sequential data access if no post-processing
is applied. Thus, we propose a stream compaction step
where only the remaining BBs are ordered to allow se-
quential access in the following steps and copy only their
data back to the host side after the completion of confi-
dence index calculation step.

Figure 6 (top) shows an example BB stream before
the stream compaction, where BBs having attributes of
−1 (BB1,BB2,BB4 and BB6) need to be eliminated. In
order to compact the stream, after elimination of these,
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Fig. 6 BB stream after patch variance result (top), after the prefix-sum operation (bottom)

Algorithm 3 Computing Patch Variance on GPU

procedure computePVOnGPU(clusterp)
for i← 0, 1 do

if i = 0 then
scanLines← Read integral image

into shared memory
else

scanLines← Read squared integral image
into shared memory

end if
Synchronize all threads in the block
for all BBs in clusterp do

if i = 0 then
pvIk ← Compute pv using integral image.

else
pvSIk ← Compute pv using squared integral
image.

end if
end for

end for
. Decide which BBs are potential object

candidates
for all BBs in clusterp do

res← pvSIk − pvIk
if res ≥ threshold then

pvStatusk ← 0
else

pvStatusk ← −1
end if

end for
end procedure

all succeeding BBs with attributes of 0 need to be grouped
together by shifting to the left. The shift amounts can
be obtained by running a prefix-sum as shown in Figure
6 (bottom). Stream compaction allows efficient use of
the memory bandwidth between the host and the de-
vice by eliminating unnecessary transfers. The prefix-
sum operation is performed using CUB [1]. CUB library
provides software primitives and it is reported to have
better performance than competing higher level libraries
such as Thrust [3]. Another motivation to use CUB is
that it allows using separate CUDA streams to make ker-
nel computations overlap with the other kernels of the
H-TLD framework. Issuing kernel execution followed by
compacting and memory copying operations as shown in
Algorithm 4 (procedure nonoverlapped) results in non-

overlapping of kernel execution and memory transfers.
In order to facilitate overlapping of multiple independent
kernel invocations with memory copy operations, all in-
dependent calls for individual kernels and asynchronous
memory copy operations in all streams could be grouped
together. Algorithm 4 (procedure overlapped) shows
the proposed call ordering for overlapping.

Algorithm 4 Non-overlapped and overlapped code

procedure Nonoverlapped
for i← 0, numofAsyncInv do

Issue PV Computation for clusters in Groupi to
GPU

Issue compacting BB stream for Groupi to GPU
Issue copying of shift amounts within the BB Stream

for each BB in Groupi from GPU to CPU
end for

end procedure

procedure Overlapped
for i← 0, numofAsyncInv do

Issue PV Computation for clusters in Groupi to
GPU

end for
for i← 0, numofAsyncInv do

Issue compacting BB stream for Groupi to GPU
end for
for i← 0, numofAsyncInv do

Issue copying of shift amounts within the BB Stream
for each BB in Groupi from GPU to CPU

end for
end procedure

4.1.3 Random Forest Index Calculation

Calculation of indexes into the confidence array (i.e. ar-
ray holding the weights) is the last step and does not re-
quire moving large amounts of dynamic data back-and-
forth between CPU and GPU. During the calculation,
some global memory accesses are not coalesced as illus-
trated in Figure 7. This access pattern is observed when;
(i) accessing the feature points to be compared in the
blurred image, (ii) accessing the absolute top-left cor-
ner positions of the remaining BBs. As shown in Table
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Fig. 7 Random Forest index calculation

2, even with this non-ideal access pattern, 16.55 times
speed-up is achieved for random forest index calculation
due to its highly parallel nature.

Algorithm 5 Calculating random forest indexes

procedure computeRFIndicesOnGPU(blurredImage,
numofBB)

Read all feature offsets into the shared memory
collaboratively.

Synchronize all threads in the block
for all remaining BBs (k) in compacted BB stream

do
for i← 1, numofForests do

index← 0
for j ← 1, numofFeatures do

index← index << 1
fp1← Calculate the absolute
position of the 1st comparison point
fp2← Calculate the absolute
position of the 2nd comparison point

if blurredImage[fp1] >
blurredImage[fp2] then

index← index|1
end if

end for
. Arrange the data in global memory to allow

coalesced access
confIndices[i ∗ numofBB + bbIdxk]← index

end for
end for
return confIndices

end procedure

4.1.4 Confidence Calculation

Since the random forest weights are updated by the learn-
ing component on the CPU side, moving the weights to
the GPU each time they are updated would be a costly
operation. Hence, it is more feasible to run this step on
the CPU side. For this step, OpenMP [9] is used to em-
ploy all the CPU cores. Each group of BBs is split into
equal size chunks so that each of these chunks could be
processed by different CPU cores concurrently. On the

other hand, the caller of this method is not aware of
the data reorganization that was made due to the load
balancing operation; therefore the method should return
confidence values for all BBs. However, this will lead to a
false cache-line sharing problem in CPU cores. As illus-
trated in Figure 8, cache-lines belonging to the different
CPU cores need to be flushed out before another core
(which is to execute a write-transaction) has access to
a nearby memory location. This problem could be over-
come by reordering data in separate temporary arrays for
each CPU thread and then letting a single CPU thread
gather those values on the final output array which is to
be returned to the caller as shown in Algorithm 2. By
this way it is ensured that the caller receives them in the
original data ordering.

5 Experimental Results

For the experiments, the same system used for the com-
putational analysis of the algorithm, having Intel i7 4770K
CPU and Tesla K40 GPU, was used.

5.1 Comparison with the baseline TLD and analysis

In this subsection, we present our experimental results,
performance comparison with the baseline TLD and a
detailed analysis of the results. In addition to the overall
speed-up analysis for different video resolutions, a more
detailed analysis of the total recall computation is given
as this is the most time consuming part of the algorithm.

As seen in Table 2 and Figure 9, there is an overall
speed-up of 9.14 times for the total recall computation
(TRC). Random forest index (RFI) calculation takes ap-
proximately 83% of TRC of TLD. Even though there
is a speed-up of 16.55 times for the RFI calculation in
H-TLD, the execution time is still dominated by RFI
calculation which takes approximately 46% of TRC of
H-TLD.

28% of the total execution time in H-TLD is spent on
stream compaction and other overheads due to the het-
erogeneous architecture. Since RFIs are required in the
confidence value calculation phase; data have to be trans-
ferred to the CPU per asynchronous kernel invocation at
this stage. A further analysis reveals that the data trans-
fers take up approximately 78% of total RFI calculation
time. Since RFIs are used to calculate confidence values
of BBs, all threads must be suspended until the transfer
is completed. It might be claimed that the threads could
execute other instructions to hide the memory transfers,
however there are no other computationally costly oper-
ations to process at this stage.

For a comparative evaluation of TLD and H-TLD at
different resolutions, we recorded a 1920x1080 video and
obtained 2 other videos having resolutions 480x270 and
960x540 by downsampling. As a result, all the different
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Fig. 8 Elimination of false-cache sharing in CPU cores

Table 2 Comparison of execution times (per call) of TLD and H-TLD for different stages of TRC executed on 1CPU, 2GPU,
1,2CPU&GPU

TLD H-TLD

Component
Exec.Time

(ms)
% of Total
Exec. Time

Exec.Time
(ms)

% of Total
Exec. Time Speed-up

Patch variance computation 0.1701 2.65% 0.0462 6.55% 3.70

Stream compaction - 0.0462 6.55% -

RFI calculation 5.2961 82.54% 0.3202 45.58% 16.55

Confidence value calculation 0.9501 14.81% 0.1381 19.66% 6.88

Other overheads - 0.1521,2 21.65% -

Total 6.416 0.702 9.14
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Fig. 9 Stacked view of elapsed time for each subcomponent of total recall computation for TLD and H-TLD

resolution videos have the same content, enabling anal-
ysis independent of the content. We used these videos to
measure the execution time of each individual compu-
tational components separately. The results are shown
in Table 3 and Figure 10. The component others refer
to the cross correlation, pattern generation, BB overlap
computation, random forest update and patch warping
which are the same in both implementations and hence

showing a speed-up of 1.00. The results show that the
total speed up is 2.74, 6.06 and 10.25 times for 480x270,
960x540 and 1920x1080 resolutions respectively.

As expected, the total speed-up increases with the
increasing resolution due to the massively parallel ar-
chitecture of the GPU. The increasing resolutions of the
captured videos bring the need for algorithms running at
higher resolutions in real-time. In addition, use of higher
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Fig. 10 Comparison of TLD and H-TLD for a)480x270, b)960x540, and c)1920x1080 videos

Table 3 Comparison of execution times of TLD and H-TLD for different components (in milliseconds)

Total recall
computation

Image
blurring

Integral image
computation LK Tracker Others Total

TLD 5.93 1.69 0.27 1.10 1.17 10.16
480x270 H-TLD 0.70 0.09 0.02 1.73 1.17 3.71

Speed-up 8.45 18.85 13.55 0.64 1.00 2.74

TLD 20.40 9.60 1.10 4.28 2.14 37.52
960x540 H-TLD 1.90 0.13 0.02 2.00 2.14 6.19

Speed-up 10.74 73.85 47.83 2.14 1.00 6.06

TLD 62.50 33.60 4.56 17.52 4.28 122.46
1920x1080 H-TLD 4.31 0.33 0.03 3.00 4.28 11.95

Speed-up 14.50 101.82 152.00 5.84 1.00 10.25
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resolution videos is desired for many applications to al-
low tracking of objects continuously within a wider field
of view. In video capture devices, using a wide-angle lens
allows monitoring a wider field-of-view uninterruptedly.
On the other hand, if the capture resolution is not in-
creased with the same proportion, the observed objects
in the captured image occupy fewer pixels, making it dif-
ficult to track objects. As a result, it can be argued that
the speed-up rates at higher resolutions are more relevant
for future applications in which the videos are captured
at higher resolutions. All the components exhibit higher
speed-up rates with the increasing resolution, reaching
14.5, 101.82, and 152.00 times speed-up at 1920x1080
for total recall computation, image blurring and inte-
gral image computation respectively. On the other hand,
LK tracker speed-up for this resolution is more modest
at 5.84 times and at 480x270 the speed-up is less than
1, countering the positive contributions of other compo-
nents and limiting the overall speed-up at lower resolu-
tions.

Figure 11 shows sample tracking results where a wa-
ter bottle is tracked. Blue bounding box indicates a highly
confident detection; whereas yellow bounding box indi-
cates moderate confidence. The bottle is initially de-
tected and tracked. Then it is partially occluded by the
seat, but the tracking is unaffected. It is then completely
occluded by the seat. When it reappears, it is redetected
by the detector after a few frames.

5.2 Comparison with GPU based Implementations

In this subsection, we compare our results with those of
the two other GPU based implementations in the liter-
ature [4] [23]. In [4], results of the GPU implementation
of TLD algorithm are presented. The baseline TLD al-
gorithm on Xeon E31275v3 is compared against their
GPU implementation on Tesla K40 GPU at 1920x1080
resolution in terms of Frames Per Second (FPS). The
experiment setup which consists of Intel i7 4770K CPU
and Tesla K40 GPU is similar to the one in this paper.
The GPUs in both works are the same while CPU Mark
scores of the CPUs are fairly close - 9714 and 10208 for
Xeon and i7 respectively [22]. This allows making di-
rect comparisons with our results. In [4], speed-up rates
of approximately 5.3 to 5.6 are reported for different
1920x1080 sequences. According to these results, H-TLD
achieves approximately 1.8 times speed-up on a similar
platform compared to the GPU implementation in [4] at
1920x1080 resolution. While the detailed design informa-
tion is not provided, the implementation is told to be a
port of the CPU version to GPU and unlike H-TLD, it
does not involve design and optimization with regards to
the particulars of such a platform.

In [23], parts of TLD are ported to the GPU and the
results are provided in terms of Frames Per Second (FPS)
on GTX 550TI GPU for 320x240 and 640x480 resolution

videos. In order to compare our results with this work, we
ran the source code released by the authors on the same
video sequences and on the same hardware platform that
we benchmarked our work. The results showed that the
algorithm runs at 37.62, 12.31 and 7.35 fps for 480x270,
960x540 and 1920x1080 resolutions respectively. Accord-
ing to these results, the proposed H-TLD implementa-
tion exhibits speed-up rates of 7.16, 13.13 and 11.39 re-
spectively compared to the GPU implementation in [23].

6 Conclusions

In this paper, we described the design and implemen-
tation of an optimized Heterogeneous CPU-GPU TLD
(H-TLD) solution using OpenMP and CUDA. The H-
TLD design aims high utilization of both CPU and GPU
while minimizing the data transfers. Load balancing on
the GPU is achieved by the proposed grouping of the
data to have a high utilization. The results show that by
leveraging the advantages of the heterogeneous architec-
ture, speed up of 10.25x could be achieved for 1920x1080
resolution. The source code of the framework is provided
as a publicly available open source library. Our perfor-
mance analysis of the final design highlights the data
transfers between the CPU and GPU memory space as
the main bottleneck. While we aimed to reduce such
transfers, some are inevitable due to the heterogeneous
architecture. Higher memory bandwidth between CPU
and GPU and unified CPU-GPU memory spaces in fu-
ture architectures are expected to have a significant pos-
itive impact on the performance without requiring any
changes in design.
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