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Abstract 6 

Aflatoxins are the toxic metabolites of Aspergillus molds, especially by Aspergillus flavus and 7 

Aspergillus parasiticus. They have been studied extensively because of being associated with 8 

various chronic and acute diseases especially immunosuppression and cancer. Aflatoxin 9 

occurrence is influenced by certain environmental conditions such as drought seasons and 10 

agronomic practices. Chili pepper may also be contaminated by aflatoxins during harvesting, 11 

production and storage. Aflatoxin detection based on chemical methods is fairly accurate. 12 

However, they are time consuming, expensive and destructive. We use hyperspectral imaging as 13 

an alternative for detection of such contaminants in a rapid and nondestructive manner. In order to 14 

classify aflatoxin contaminated chili peppers from uncontaminated ones, a compact machine vision 15 

system based on hyperspectral imaging and machine learning is proposed. In this study, both UV 16 

and Halogen excitations are used. Energy values of individual spectral bands and also difference 17 

images of consecutive spectral bands were utilized as feature vectors. Another set of features were 18 

extracted from those features by applying quantization on the histogram of the images. Significant 19 

features were selected based on proposed method of hierarchical bottleneck backward elimination 20 

(HBBE), Guyon’s SVM-RFE, classical Fisher discrimination power and Principal Component 21 

Analysis (PCA). Multi layer perceptrons (MLP) and linear discriminant analysis (LDA) were used 22 

as the classifiers. It was observed that with the proposed features and selection methods, robust and 23 
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higher classification performance was achieved with fewer numbers of spectral bands enabling the 24 

design of simpler machine vision systems. 25 

 26 

Keywords: Machine vision, aflatoxin detection, hyperspectral imaging, food safety, feature 27 

extraction, feature subset selection, classification, multi layer perceptron. 28 

 29 

1. INTRODUCTION 30 

Aflatoxins are toxic compounds produced by many species of Aspergillus molds, especially by 31 

Aspergillus flavus and Aspergillus parasiticus (Zeringue et al, 1998). The term “aflatoxin” comes 32 

from Aspergillus flavustoxin. As International Agency for Research on Cancer (IARC) pointed 33 

out, aflatoxin causes human liver cancer (IARC, 2002). A wide variety of foods (hazelnut, pistachio 34 

nut, almond, dried fig, wheat, corn, chili pepper, etc...) are susceptible to aflatoxin contamination 35 

that degrades food quality and threatens human health. Therefore, several countries have taken 36 

strict regulations to control aflatoxin contamination level. Generally accepted aflatoxin level in 37 

food is, 20 ppb (parts per billion) in both USA and Turkey. On the other hand maximum level of 38 

aflatoxin B1 and total aflatoxin was determined as 5 ppb and 10 ppb in European countries, 39 

respectively (Commission Regulation [EC], 2006). 40 

 41 

Aflatoxin contamination can occur during pre-harvesting and post-harvesting periods. High 42 

temperature, prolonged drought conditions and high insect activities are significant factors for 43 

aflatoxin contamination during pre-harvesting. For post-harvesting, warm temperature and high 44 

humidity factors become active ingredients that increase the mold invasion and toxin production 45 
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(Wagacha and Muthomi, 2008). High Performance Liquid Chromatography (HPLC), Mass 46 

Spectroscopy (MS), Thin Layer Chromatography (TLC), and Enzyme-Linked Immunosorbent 47 

Assay (ELISA) are widely known chemical aflatoxin detection methods amongst which HPLC is 48 

superior in terms of accuracy and sensitivity (Chen et al, 2005). As an alternative to chemical 49 

methods, machine vision and pattern classification techniques are considered for aflatoxin 50 

detection because they are faster, cheaper and nondestructive (Kalkan et al., 2011, Yao et al., 2011, 51 

Yao et al., 2006, Pearson et al., 2001). As Shotwell et al. (1972), Fersaie et al. (1978), Doster et. 52 

al, 1998 and Herrman, (2002) pointed out, under ultraviolet 365 nm illumination, aflatoxin 53 

contaminated samples exhibit bright green yellowish fluorescence (BGYF). However it should be 54 

noted that the mechanism is much more complex. Certain fungi produce kojic acid which may 55 

result in BGYF when there is enough peroxidase enzyme in the plant. It is known that not all fungi 56 

that produce kojic acid also produce aflatoxins. Similarly, the lack of peroxidase enzyme may 57 

conceal the presence of aflatoxins because BGYF will be absent. Thus, BGYF itself does not 58 

directly indicate the actual presence of aflatoxin and it may result in false positives and negatives 59 

during the evaluation stage. Furthermore, in the previous studies on corn and pistachio the authors 60 

(Pearson et al., 2001, Yao et al., 2006) stated that BGYF phenomenon under UV illumination is 61 

observed when average aflatoxin level exceeds 100 ppb.  Therefore, BGYF based aflatoxin 62 

detection is not always recommended (Fersaie et al, 1978, Herrman, 2002, Doster et. al, 1998).  63 

Some researchers used BGYF in their studies. Utilizing the reflectance ratios of 440/490nm and 64 

450/490 nm, Tyson and Clark, (1974) achieved 90% classification rate by examining aflatoxin-65 

infected pecans under UV fluorescence. By analyzing corn kernels, again Yao et al. (2006) achieved 66 

87% and 88% classification performance for 20 ppb and 100 ppb aflatoxin level thresholds. Kalkan 67 

et al. (2011) studied hazelnuts and red chili peppers and achieved 92.3% and 79.2% classification 68 
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accuracies respectively. Another possible excitation mode is halogen illumination.  Hirano et al. 69 

(1998) used transmittance ratio (T700nm/ T1100 nm) bands for peanuts classification under 70 

halogen illumination and achieved 95% classification accuracy. Pearson et al. (2001) achieved 71 

96.6% classification accuracy rate of corn samples illuminated by 100W quartz-tungsten-halogen 72 

lamp by utilizing the spectral reflectance ratio (R735nm/R1005nm). They used discriminant 73 

analysis technique for detecting highly contaminated corn kernels (>100 ppb) from low 74 

contaminated (<10 ppb) or uncontaminated ones.  75 

 76 

We consider aflatoxin detection in ground red chili pepper flakes in the present paper. The 77 

following section will describe hyperspectral data acquisition and preprocessing. Next, we will 78 

express our proposed feature extraction and selection approaches. Experimental results will be 79 

reported and discussed in Section 4. Finally in Section 5, we will give concluding remarks. 80 

 81 

2. HYPERSPECTRAL IMAGE ACQUISITION AND PREPROCESSING 82 

In the previous studies (Kalkan et al. 2011, Yao et al., 2006, Pearson et al., 2001), single 83 

illumination sources were used. More specifically, some studies were performed only under 84 

halogen illumination whereas others were done under UV. Basically, UV illumination is utilized 85 

for the fluorescence, halogen excitation is for reflectance phenomena. In order to investigate the 86 

contribution of those illuminations on the classifier performance, we utilized both excitations in 87 

this study.   Figure 1 and Figure 2 depict a general overview of the hyperspectral imaging system 88 

and a flowchart and interrelated components of the proposed system, respectively. 89 

 90 

Figure 1. A general overview of the hyperspectral imaging system 91 
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 92 

Totally 53 ground red chili pepper flake samples were gathered from different regions in Turkey. 93 

Most of them were sold as unpackaged. Figure 3 shows their aflatoxin variations as a histogram 94 

graph. Here we applied log10(1+Aflatoxin value) transformation in order to build a more compact 95 

histogram plot. As 10 ppb is the upper threshold for aflatoxin for spices and herbs in the EU 96 

(Commission Regulation [EC], 2006) we used 10 ppb as a threshold to classify the pepper samples 97 

into aflatoxin positive (contaminated) and negative (uncontaminated) groups. Mean aflatoxin level 98 

was measured as 16.78 ppb. Average aflatoxin levels for Afl- and Afl+ groups are 3.2 ppb and 33.3 99 

ppb, respectively. As previous studies (Pearson et al., 2001, Yao et al., 2006) stated that BGYF is 100 

observed when aflatoxin level in the sample is high, we expect halogen illumination to contribute 101 

more for detection of aflatoxin for our chili pepper problem. 102 

 103 

Figure 2. Flowchart and interrelated components of the proposed system. 104 

 105 

The hardware of the image acquisition system is composed of a FireWire Sony CCD camera with 106 

Varispec liquid crystal tunable filter assembly. Hyperspectral image series ranging from 400 nm to 107 

720 nm (10 nm spectral bandwidth) of 53 different chili pepper samples have been acquired under 108 

100W quartz-tungsten-halogen and UV 365 nm illumination sources. Resolution of each image is 109 

1280 X 960 pixels. During the acquisition process the set up was stationary, so there was no need 110 

to register the hyperspectral images. Images of three different locations of the same chili pepper 111 

sample were obtained in order to increase the training data. This also enables us to analyze a wider 112 

surface of the chili pepper sample. Figure 4 depicts sample images from the hyperspectral image 113 

series of uncontaminated and contaminated peppers for halogen and UV illuminations. 114 
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 115 

Figure 4. Sample images from the hyperspectral image series of uncontaminated and 116 

contaminated peppers for halogen and UV illuminations. 117 

 118 

All the pepper samples were sent to TUBITAK Ankara Testing and Analyses Laboratory (ATAL) 119 

for HPLC analysis. Chili pepper samples that exceed 10 ppb threshold were labeled as aflatoxin 120 

positive otherwise they were labeled as aflatoxin negative for inductive learning.  121 

 122 

Camera software by default applies histogram equalization to acquired images. Although, 123 

histogram equalization automatically controls oversaturation and under-saturation by applying 124 

adaptively changing exposure time, it also modifies original pixel values. To overcome this 125 

particular problem, one should fix the exposure time value of the camera and camera gain 126 

parameter to a predefined value. On the other hand, single exposure time eventually leads to under 127 

saturated and over saturated regions in the hyperspectral image series. Therefore, we dictated three 128 

spectral regions by manually changing exposure time values. Table 1 depicts the prescribed spectral 129 

regions, exposure times and corresponding normalization coefficients. We normalized the 130 

exposure of the images by their normalization coefficient before extracting the feature vectors. It 131 

should be noted that, exposure normalization leads some pixel values to exceed 255 pixel gray 132 

values and increase the dynamic range excessively. Therefore, we applied non-linear square root 133 

transformation in order to limit the range of the pixel value of the normalized images to 0-255 pixel 134 

gray value interval. With a maximum normalization coefficient of 9, a pixel value of 255 will yield 135 

corresponding maximum pixel gray value of 48 after the square root transformation. We used 48 136 

levels to represent pixel gray values. 137 
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 138 

Table 1. Exposure normalization coefficients of the most informative regions of the spectral 139 

bands. 140 

 141 

In order to eliminate the dust particles and reduce sensor noise in the images we applied 3x3 median 142 

filtering.  143 

 144 

3. FEATURE EXTRACTION AND SELECTION 145 

Classifier performance is strongly related to the relevance of the extracted features. In the ideal 146 

case, the feature vector should keep the most compact description of the desired function. In our 147 

problem this is the aflatoxin presence signature. Nevertheless, extracting meaningful and 148 

discriminative feature vector is not a straightforward and trivial process. It requires acquiring 149 

domain knowledge and underlying physical phenomena. In the hyperspectral images of chili 150 

pepper samples, shape and orientation of chili pepper flakes does not correlate with aflatoxin 151 

presence. Therefore, useful features should have weak relevance to the second order features like 152 

edges and orientation. Relying on solely spectral band mean intensity is not desirable either. There 153 

may be Afl- samples and Afl+ samples with nearly the same mean intensity value. In the previous 154 

studies, Kalkan et al., (2011) used wavelet based intensity features and achieved 79.2 % 155 

classification performance indicating that spatial and textural information contributes the 156 

prediction accuracy. Conversely, most of the researchers (Pearson et al, 2001, Yao et al. 2006, 157 

Hirano et al, 1998) utilized spectral band energies as a feature vector in their studies and achieve 158 

reasonable accuracy rates. In this study, we extracted features by applying histogram based feature 159 

extraction technique. Histogram based feature extraction was used in several studies Sakthivel et 160 
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al (2010) used histogram based features for face recognition problem, Singh et al (2009) utilized 161 

histogram features for detecting insect damages in wheat kernels, ElMasry et al. (2007) used for 162 

detection of apple bruise and Yang et al. (2010) employed histogram features for food recognition.  163 

We will compare the performance of different types of features. 164 

 165 

Another concern is the size of extracted feature vector. Larger feature size results in the well known 166 

“curse of dimensionality” problem. Increasing the feature vector dimension requires an exponential 167 

increase in the data size. Hence, the size of the feature vector should be reduced to an acceptable 168 

level. Fewer features not only improve the classifier performance but also provide faster 169 

computation and better understanding the underlying mechanism of the problem (Guyon and 170 

Elisseeff, 2003).  171 

 172 

3.1. Feature extraction 173 

Feature extraction is the process of transforming the raw data (in our problem it is the pixel gray 174 

values) into a set of reduced descriptive features. Massive amount of data in hyperspectral image 175 

cube can be described by features of a lower dimension by applying the feature extraction process. 176 

PCA and Auto-Associative Artificial Neural Network (ANN) are used for further reduction of the 177 

feature vector size. PCA maps high dimensional features onto a lower dimensional space by 178 

selecting the principal eigenvectors. Similarly, Autoassociator is equivalent to PCA if only one 179 

hidden layer is used as a bottleneck layer in the network topology and a linear activation function 180 

is used. It may outperform the PCA when an appropriate non-linear transformation is employed 181 

(Bourlard and Kamp, 1988).   Let us assume the pixel gray value located at x, y of the k’th spectral 182 

band is denoted by  𝑰𝒌(𝒙, 𝒚). We extract the following feature vectors.  183 
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 184 

Individual band energy features: 185 

𝒆𝒌 = ∑ ∑ 𝑰𝒌(𝒙, 𝒚)𝒚𝒙                                        𝑘 = 1,2, … 33       (1) 186 

Absolute difference of consecutive spectral band energy features: 187 

𝒆𝒌 = ∑ ∑ |𝑰𝒌+𝟏(𝒙, 𝒚) − 𝑰𝒌(𝒙, 𝒚)|                 𝑘 = 1,2, … 32𝒚𝒙                    (2) 188 

Here, Ik (x, y) and ek correspond to pixel gray level intensity at image point (x,y) and energy value 189 

for the k th spectral band,  respectively. The feature vectors described in Expressions 1 and 2 reduce 190 

the information in a given band to a single value. However, the frequency of a particular intensity 191 

value or the frequency of the difference of the intensity values may provide valuable information. 192 

This information can be extracted if the histogram of the intensity values or the difference of the 193 

intensity values for a given spectral band is used.  194 

 195 

Figure 5 and Figure 6 present extracting processes of the quantized histogram matrix features. As 196 

it is shown in Figure 5, the histogram of the spectral band image is first computed with predefined 197 

number of bins. This limits the feature vector size and also promotes that a reasonable number of 198 

pixels fall in each bin.  Then, the total number of pixels within the particular bin is used as the 199 

histogram feature. By using all spectral bands we can construct the quantized histogram matrix 200 

(QHM) as depicted in Figure 6. For simplicity we only demonstrate the extraction process for 12 201 

bins. Different numbers of bins were also used and we will describe them in section 4 in detail.  202 

 203 

QHM feature set is expected to contain the aflatoxin signature. This signature may be degraded if 204 

the overall mean intensities of the spectral bands are used instead. The QHM features are computed 205 
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both for individual spectral bands and also for the absolute difference of consecutive spectral bands. 206 

Hence the QHM features can be expressed as  207 

𝑒𝑘,𝑛 = ∑ ∑ 𝐼𝑘,𝑛(𝑥, 𝑦)𝑦𝑥           𝑘 = 1,2, … 33  𝑛 = 1,2, … 𝐵            (3) 208 

Where k denotes index of spectral band, n denotes the bin index and B denotes number of bins that 209 

we want to employ. As a result, Ik,n(x,y) is the pixel gray value of the kth spectral band or absolute 210 

difference of consecutive spectral bands of the nth bin. 211 

                212 

Figure 5. a) A sample image (640 nm).  b) Representative gray level histogram of the image in 213 

(a) to 12 bins. The color of the histogram bar at the bottom depicts the total number of pixels 214 

falling in each bin. 215 

 216 

Figure 6. Quantized histogram matrix (QHM) is composed of histogram bars. a) Individual 217 

spectral band energies b) Absolute difference of consecutive spectral band energies. X axis 218 

denotes the spectral bands (or band pairs in the case of absolute difference) and Y axis denotes 219 

histogram bar for that band. 220 

 221 

3.2. Feature selection 222 

The main objective of the feature selection is to reduce the feature vector size without modifying 223 

the feature values. As the features are computed for each band separately in our problem, reducing 224 

the feature size removes the need for acquiring the corresponding image along the spectral axis. As 225 

a result, a more compact machine vision system can be established. Moreover, the dataset may 226 

contain redundant, irrelevant and/or noisy features. Removing these features is expected to yield 227 

higher and more robust classification rates. Feature selection can be divided into two main 228 
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categories. First is the feature ranking. The second is the feature subset selection. Feature ranking 229 

is the process of sorting the candidate features according to their predictive significance. Although 230 

this approach is computationally efficient, determining the number of features is still an open 231 

problem. Selecting the top N features is intuitive but there is a possibility of retaining highly 232 

correlated features as in the hyperspectral imaging domain. In this study we used feature ranking 233 

scheme based on the Fisher discrimination power and employed the feature selection method to 234 

reveal the most discriminative features. Fisher discriminant was first proposed by Fisher, R.A. 235 

(1936) and is utilized in various studies. Fisher discrimination projects data from n-dimensional 236 

space to a one-dimensional space where between class scatter is maximum and within class scatter 237 

is minimum. It can be computed as; 238 

𝐹𝑑𝑝 =
|𝜇1−𝜇2|2

𝜎1
2+𝜎2

2            (4) 239 

Here, Fdp is Fisher discrimination power, µi and  σi denote the mean and standard deviation of the 240 

ith class respectively. Figure 7 depicts composite illustration of the boxplot (a) of the individual 241 

spectral bands with their Fisher discrimination power (b). The boxplot at the top shows the 50 242 

percentile of the mean energy features of the contaminated (lighter color) and uncontaminated 243 

(darker color) chili peppers after z-score normalization over each spectral band. The horizontal bar 244 

beneath indicates the spectral bands value from 400 nm to 720 nm with 10 nm width. It can be 245 

observed that, uncontaminated chili pepper samples have relatively higher intensity levels than the 246 

contaminated ones. However, there are many samples that lie at the tails of the energy distribution 247 

(outliers) and the mean energy value distributions overlap significantly. Therefore, a threshold 248 

value that would separate the data into two distinct classes cannot be determined. The Fisher 249 

discrimination power for each spectral band is computed using Expression 4 and depicted in the 250 

bottom graph. Consistent with the boxplot above, the higher discrimination values are observed 251 
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between 540 to 640 nm spectral bands. Similarly, Figure 8 illustrates integrated box plot of the 252 

absolute difference energies of consecutive spectral band features and Fisher discrimination power 253 

values. Most discriminative spectral bands lie between 520 to 570 nm.  254 

  255 

Figure 7. a) Boxplot, b) Fisher discrimination power, of the individual spectral band energy 256 

features. 257 

 258 

Figure 8. a) Boxplot, b) Fisher discrimination power, of the absolute difference of consecutive 259 

spectral band energy features. 260 

 261 

For feature subset selection, we propose a novel feature subset selection method based on the MLP 262 

connection weights. By saying MLP we actually mean special case of one hidden-layer, feed-263 

forward neural network trained by the well known back propagation algorithm (Rumelhart et al., 264 

1986).  Garson, (1991) stated that one can define feature saliency metric as: 265 

𝝉𝒊 = ∑ |𝑾𝒋𝒊𝑾𝒋|                        𝑵
𝒋=𝟏 𝑖 = 1,2, . . 𝑀      (5) 266 

Here, 𝝉𝒊 denotes saliency metric of the ith feature. M and  𝑁 are the number of input and hidden 267 

nodes, respectively. Wji is the connection weight between the ith node of the input layer and jth 268 

node of the hidden layer. Similarly, Wj denotes the connection weight between jth node of the 269 

hidden layer to the output. In addition to this, Olden and Jackson, (2002) used Garson’s algorithm 270 

and sensitivity analysis by applying randomization approach to show that MLP based variable 271 

selection can be applied and interpreted successively in the ecological domain.  Each 272 

feature/variable is represented as an input node in the neural network topology. Let N be the number 273 

of hidden neurons in the hidden layer. As Figure 9 indicates ith feature’s saliency metric can be 274 
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computed as the sum of the absolute product of the connection weights from the ith input node 275 

through the hidden nodes to the output node.  276 

 277 

Figure 9. MLP with input, hidden and output layer. Wji is the connection weight between ith input 278 

node and jth hidden node. Similarly, Wj is the connection weight between jth hidden node and the 279 

output node. 280 

 281 

The logic behind MLP based feature saliency metric is as follows. Connection weights are 282 

continuously updated in the training phase so that significant input nodes have strong connections 283 

in the network topology which means those input nodes have higher contribution to the output. 284 

Likewise, connection weights of the irrelevant features tend to vanish. Hence, MLP based feature 285 

saliency metric can be used as a dimensionality reduction technique by decaying the connection 286 

weights of the insignificant features. Moreover, the saliency can also be instrumental in ranking 287 

the features based on their discrimination power. This approach was taken in our previous study 288 

(Atas et al., 2011) 289 

 290 

We propose a novel feature subset selection technique based on the MLP feature saliency metric. 291 

Forward selection and backward elimination were extensively used subset selection methods and 292 

regarded as robust to over fitting (Guyon and Elisseeff, 2003). Again, Guyon et al, (2002) proposed 293 

a state of the art support vector machine based recursive feature elimination method (RFE). In the 294 

RFE approach, the search starts with complete feature set. The features are ranked according to 295 

their predictive significance at every iteration and the least significant one is removed from the 296 

feature set. This procedure proceeds until some criterion is met. One can remove a single or last N 297 
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features. Eliminating one feature per iteration is computationally costly, especially if you have 298 

large number of features. Thus, we modified the RFE method of Guyon et al, (2002) by replacing 299 

the central classifier SVM by MLP and we accelerated the process by removing last N features at 300 

each iteration where N is equal to the number of hidden neurons in the MLP network. Determining 301 

the optimal number of neurons in the hidden layer is still an open problem in the ANN domain. 302 

Yet there are some rules of thumb which are extensively used by the researchers (Rapid Miner, 303 

2009, Berry and Linoff, 1997, Boger and Guterman, 1997, Blum, 1992). Specifically, the Rapid 304 

Miner team (2009) suggested number of neurons in the hidden layer to be: 305 

𝑁𝑛𝑜𝑑𝑒𝑠 =
(𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠+𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠)

2
+ 1       (6) 306 

Here, Nnodes denotes the number of nodes in the hidden layer, N f e a t u r e s  is the number of features 307 

used as input nodes.  In our trials, this approach gave satisfactory results so we used it. The 308 

procedure consists of two main stages: Backward elimination and subset verification. At the 309 

backward elimination stage, the candidate feature set is ranked based on the MLP saliency metric 310 

and the last Nnodes as in Expression 6 are eliminated. This process is repeated until only one feature 311 

remains. The number of steps, M, required for P original features is given by 312 

     𝑀 ≅ 𝑙𝑜𝑔2 𝑃      (7)   313 

The candidate feature subset at every step is recorded in an array list data structure as shown in 314 

Figure 10. After the feature elimination process is completed, subset verification is initialized. At 315 

this stage, starting from the lowest feature subset (which typically consists of a single feature)   316 

generalization errors for each feature subset are computed. If there are L ranked features at a given 317 

subset, the generalization error for i) only one, ii) first two, iii) first three, etc. features are computed 318 

using leave-one-out cross validation strategy.  The computational cost associated with this step 319 

increases exponentially with increasing the number of ranked features L. Therefore, we only 320 
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computed generalization errors for the first five levels from the bottom of the triangle in Figure 10. 321 

We chose the feature subset which yielded the minimum generalization error. In the case of similar 322 

generalization errors we preferred the smaller size of features amongst the candidate feature 323 

subsets. We used non-random V shape (triangular) weight initialization scheme for the connection 324 

weights between input and hidden layer. That way, reproducible results could be obtained during 325 

the feature selection process. Bias values were set to zero at start up. 326 

   327 

Figure 10. Proposed HBBE method.  L and M designate the number of features and the number of 328 

steps, respectively. 329 

 330 

3.3. Classifier selection 331 

We decided to utilize both a simple classifier and a complex classifier for our problem. For linearly 332 

separable problems, Linear Discriminant Analysis (LDA) provides good classification 333 

performance. Moreover due to its simplicity LDA is less susceptible to over fitting the training data 334 

which provides robustness. Thus, LDA was selected as the first classifier. As the second classifier, 335 

we preferred to use a feed forward back propagated one hidden layered artificial neural network 336 

also known as the MLP. MLP is extensively used in various studies and is regarded as the universal 337 

approximator of any continuousfunction (Hornik et al, 1989). Elmasry et al., (2009), Bochereau et 338 

al., (1992) and Jayas et al. (2000) reported that, ANN is very efficient for identification and 339 

classification of agricultural products which contain non-linearity. In particular, Kim et al. (2000) 340 

pointed out that, MLP is superior to linear classifiers in terms of prediction accuracy for the 341 

classification of kiwi fruit berries. Again, Park and Chen (1996) utilized ANN with a spectral 342 

imaging technique and successively achieved 93.3% generalization performance for classifying 343 

http://dx.doi.org/10.1016/j.compag.2012.06.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


This is the author's post-print version, the final copy is available at http://dx.doi.org/10.1016/j.compag.2012.06.001 
©2015 This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 
 

16 
 

wholesome chicken carcasses from unwholesome ones. Thus, we selected MLP as the second 344 

classifier in this study. In addition to these, SVM with linear kernel classifier was also used within 345 

the SVM-RFE method. 346 

 347 

4. EXPERIMENTAL RESULTS 348 

Hyperspectral image series with 33 spectral bands at two different illumination modes (halogen 349 

and UV) of 53 chili pepper samples were acquired. Images of three different locations of each chili 350 

pepper sample yielded a total of 10494 images of 1280x960 resolution. It should be noted that, 351 

during the evaluation stage, images of the same chili pepper samples were isolated from the training 352 

data so that unbiased accuracy results can be achieved. By using Equation 1 and Equation 2, feature 353 

vectors with size of 33 individual spectral band energy features and size of 32 absolute differences 354 

of consecutive spectral band energy features were extracted. The other two types of feature sets 355 

were extracted according to Equation 3. They are, quantized individual spectral band energy 356 

features and quantized absolute difference of consecutive spectral band energy features. We tried 357 

6, 12, 24 bins feature set and achieved best discrimination power with 12 bins. The total number 358 

of features in the quantized individual spectral band was 33 (spectral bands) x 12 (quantization 359 

bins) = 396. Similarly for the quantized absolute difference of consecutive spectral band, originally 360 

we had 32 (difference spectral band pairs) x 12 (quantization bins) which resulted in 384 features. 361 

As it is seen in Figure 6, there exists high number of zero value features in the feature set. MLP 362 

typically discards those features in the first step.  363 

 364 

All the data were normalized according to Z-Score normalization yielding the distribution of the 365 

data with zero mean and unit variance. The learning rate, momentum coefficient and the number 366 
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of epochs were adjusted adaptively with the rate of convergence. The learning rate and the 367 

momentum value were initialized as best practices to 0.1 (Cravener and Roush, 1999, Rajanayaka 368 

et al., 2003), and decayed during the learning phase. Decaying procedure is summarized in  Figure 369 

11. By this way it is expected to prevent the classifier from over-fitting and under-fitting.  As 370 

Hornik et al. (1989) and Malek et al. (2000) pointed out, MLP with a single hidden layer is adequate 371 

as a universal approximator. We also employed a single hidden layered network topology in our 372 

study. The number of hidden nodes in the hidden layer was determined via the Expression 6. 373 

 374 

Figure 11. Schematic diagram of the decaying procedure of the learning rate and momentum 375 

values. 376 

K-fold cross validation technique was utilized for the evaluation of generalization performance. In 377 

the machine learning community, K is commonly selected as 10 or 5 (Breiman and Spector, 1992, 378 

Wassenaar et al., 2003). Therefore in this study we used K as 5. We partitioned our data set 379 

randomly into five disjoint folds. Four folds were used for training and validation purposes and the 380 

remaining fold was utilized as the unseen test data for our predictive model. Since our data is 381 

limited, we would like to exploit all the data at the training and validation set. Thus, we preferred 382 

to employ leave one out cross validation (LOO-CV) technique for training and validation set. The 383 

final decision on aflatoxin presence is made using majority voting on the three images of the same 384 

chili pepper. This process was repeated for each fold and average accuracy rate was computed from 385 

the five folds test results. 386 

 387 

In order to assess the effectiveness of our proposed method we compared its classification accuracy 388 

rates with those of the original features and reduced features by applying PCA, SVM-RFE and 389 
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Fisher methods. To achieve a fair comparison with HBBE and SVM-RFE algorithms, feature 390 

selection process was also employed on the PCA and Fisher methods. Table 2 shows overall 391 

accuracy rates of several feature sets with various feature selection methods under the halogen and 392 

UV illuminations. Average number of features used for each methods are given below the accuracy 393 

rates in parentheses. As Table 2 indicates, in most cases, HBBE method outperforms other. Even 394 

PCA gives higher accuracy in two cases (Halogen-individual band and UV-absolute difference), 395 

HBBE is still preferable since PCA uses all the spectral bands which is not a desired property for 396 

constructing a simple machine vision system. 397 

  398 

Table 2. Generalization performance of the extracted features MLP versus LDA classifiers under 399 

halogen and UV excitations. 400 

 401 

As it can be seen from Table 2, taking the absolute difference of consecutive spectral bands 402 

generally improves the classification performance for both halogen and UV excitations.. Similarly 403 

quantization process increases the accuracy rate in almost all the feature sets.    404 

 405 

Table 3 compares the best results obtained by our proposed methods to wavelet LDB method of 406 

Kalkan et al. (2011). Best results for Dataset-1 and Dataset-2 are shown in bold. As it is seen in the 407 

table, our proposed method outperform wavelet LDB method. This comparison was made for two 408 

datasets. The Dataset-1 which consists of 53 new chili pepper samples using electronically tunable 409 

filter, is the spectral data acquired for this research, the Dataset-2 comprises 40 chili pepper samples 410 

imaged using optical filters with full width half maximum (FWHM) 400 to 600 nm as described in 411 
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(Kalkan et al., 2011) study. We should emphasize that the bands 520-720 nm with 10 nm width 412 

were not available in the Dataset-2. 413 

 414 

Table 3. Benchmark of the proposed method against wavelet LDB method for Dataset-1 and 415 

Dataset-2 416 

 417 

In the case of the Dataset-2, the quantized individual band energy features yield better accuracy 418 

rates than the quantized absolute difference energy features. This may be due to the fact that we 419 

fixed the camera gain parameter to 850 electron/CCD and manually changed the exposure time 420 

that blocked the running of histogram equalization process at the background while acquiring the 421 

images of the Dataset-1. On the other hand, Dataset-2 was acquired under the automatic gain 422 

parameters enabling automatic histogram equalization which may modify the original spectral 423 

signal. Although histogram equalization aims to enhance the image quality and yields visually 424 

appealing images, it will also modify the spectral signature. This may degrade the features based 425 

on absolute difference of consecutive spectral bands more than individual band energy features. 426 

Therefore individual spectral bands may contain more informative pattern than the absolute 427 

difference of consecutive spectral bands.  As a result, wavelet features and quantized individual 428 

spectral band energy features produced relatively better results than the absolute difference features 429 

under the UV excitation. Table 2 and Table 3 reveal that aflatoxin detection in chili pepper problem 430 

is not a linearly separable problem because almost in all cases MLP outperforms LDA in terms of 431 

classification accuracy.  432 

 433 

http://dx.doi.org/10.1016/j.compag.2012.06.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


This is the author's post-print version, the final copy is available at http://dx.doi.org/10.1016/j.compag.2012.06.001 
©2015 This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 
 

20 
 

As it seen in Table 3, the highest classification accuracy on the Dataset-1 was obtained with 434 

absolute difference of QHM features selected by the HBBE feature subset selection using MLP 435 

classifier as 83.26% under halogen illumination. Similarly, the highest classification accuracy on 436 

the Dataset-2 was obtained with individual band of QHM features selected by the HBBE feature 437 

subset selection using MLP classifier as 87.5% under UV illumination.   438 

 439 

Figure 12 illustrates the features selected by 5 fold cross validation of QHM features based on 440 

HBBE feature selection under the halogen illumination for the Dataset-1. The features selected at 441 

each fold are added to the corresponding bin. As the QHM features require two consecutive bands 442 

to be used, each feature contributes to the tally in two bins. To determine which spectral band 443 

images should be acquired in the machine vision system. In Figure 12, the most discriminative 444 

spectral bands and features can be seen. The most informative bands are 540, 550, 560, 590, 640 445 

and 650 nm if voting threshold value 4 is selected . 446 

 447 

Figure 12. Dataset-1 vote map for visualizing the most frequently selected spectral bands with the 448 

associated bin numbers. 449 

 450 

In Figure 12, the frequency of each feature is indicated on the corresponding feature cell. The 451 

frequency count of a particular spectral band is the total of the frequency counts of all bins in that 452 

spectral band. Dark color indicates high frequencies whereas light color means low frequencies. 453 

Completely white cells are the features with insignificant contribution to classification. Proposed 454 

feature selection scheme eliminates those features and reduces the feature dimension.  We can 455 

extract series of most discriminative spectral bands by applying different threshold values. Table 4 456 
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depicts, most discriminative spectral bands based on different threshold values associated with 457 

LOO-CV accuracy rates.  458 

  459 

Table 4. Most discriminative spectral bands based on different threshold values associated with 460 

LOO-CV accuracy rates for the Dataset-1. 461 

Table 4 indicates that there is a tradeoff between the accuracy rate and number of features selected 462 

which will determine the design of the machine vision system. Higher classification performance 463 

may require higher numbers of spectral filters which will increase the complexity of the overall 464 

machine vision system. On the other hand, establishing a relatively simpler machine vision system 465 

can be realized at the expense of lower generalization performance. 466 

 467 

We repeated the same scenarios for the Dataset-2 as well. Figure 13 and Table 5 demonstrate the 468 

most frequently selected spectral bands and threshold features respectively. 469 

 470 

Figure 13. Dataset-2 vote map for visualizing the most frequently selected spectral bands with the 471 

associated bin numbers. 472 

Table 5. Most discriminative spectral bands based on different threshold values associated with 473 

LOO-CV accuracy rates for the Dataset-2. 474 

It is seen from Table 5, for the Dataset-2, simpler machine vision system with single spectral band 475 

of 420 nm is sufficient to achieve 85% classification accuracy. On the other hand, if 400 nm is also 476 

used in the system, 90% classification accuracy would be possible. 477 
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 478 

5. CONCLUSION 479 

In this study, detection of aflatoxin contaminated chili pepper was investigated. Both UV and 480 

Halogen illuminations were used. Hyperspectral image series of 53 the Dataset-1 were acquired. 481 

Absolute difference of consecutive spectral band energy features was proposed. Another set of 482 

quantized histogram matrix features (QHM) were extracted from individual spectral bands and 483 

absolute difference of consecutive spectral bands by applying the quantization process. The most 484 

discriminative features were constructed with 12 bins quantization. In addition to these, a novel 485 

feature selection method was also proposed based on saliency metric of MLP connection weights. 486 

This approach was compared to PCA and Fisher methods. 83.26% accuracy rate was achieved for 487 

the Dataset-1 under the halogen illumination with proposed QHM features and HBBE feature 488 

selection method. Utilizing halogen is superior to UV. The most frequently selected spectral bands 489 

for the Dataset-1 were 540, 550, 560, 590, 640 and 650 nm. We used LDA as a simple linear 490 

classifier and MLP as a complex non-linear classifier. Experimental results reveal that MLP 491 

outperforms LDA in terms of classification accuracy rate. Robustness of our proposed methods 492 

was verified by the Dataset-2 under the UV excitation and we achieved 87.50% classification 493 

accuracy. 400 and 420 nm spectral bands were selected as the most discriminative spectral bands 494 

for the Dataset-2. With the reduced spectral bands, it will be possible to construct a simple machine 495 

vision system for aflatoxin detection in chili pepper. 496 

 497 
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 611 

 612 

TABLES 613 

 614 

Illumination Exposure time (s) Normalization coefficient 

Halogen (400-490) nm 4.5                      1 
Halogen (500-590) nm 2.4                      1.875 
Halogen (600-720) nm 0.5                      9 

UV (400-690) nm 9.6                      1 
UV (700-720) nm 3.1                      3.09 

 615 

Table 1: Exposure normalization coefficients of the most informative regions of the spectral bands. 616 

 617 

Feature 
Extraction 
Method 

Org. 
Feature 

size 

MLP classification accuracy rates SVM LDA classification accuracy rates 

Original PCA 
 

Fisher 
 

HBBE RFE Original PCA 
 

Fisher 
 

HBBE 
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H
al

o
ge

n
 

Individual Band 
Energy Features 

      33 62.34 70.76 
(11.4) 

67.94 
(4.4) 

68.16 
(6.8) 

56.54 
(7.8) 

37.64 66.73 
(17.4) 

65.16 
(1.0) 

34.00 
(5.4) 

Absolute Difference 
Energy Features 

32 62.52 69.36 
(18.0) 

71.29 
(12.0) 

71.62 
(5.4) 

71.45 
(10.2) 

50,70 63.03 
(13.4) 

64.76 
(1.2) 

43.64 
(3.2) 

Quantized Individual 
Band Energy Features 
(12 bins) 

396 61.98 67.43 
(6.2) 

67.92 
(1.8) 

81.26 
(11.0) 

76.00 
(17.0) 

48.88 65.46 
(11.4) 

70.66 
(6.2) 

60.70 
(8.2) 

Quantized Absolute 
Difference Energy 
Features (12 bins) 

384 60.34 64.70 
(11.6) 

71.21 
(4.8) 

83.26 
(5.8) 

71.81 
(17.2) 

50.88 67.85 
(13.2) 

72.44 
(5.4) 

61.98 
(6.4) 

U
V

 

Individual Band 
Energy Features 

33 63.80 63.11 
(6.4) 

63.83 
(1.8) 

69.80 
(3.0) 

47.45 
(5.8) 

33.84 69.18 
(9.4) 

65.17 
(1.2) 

35.82 
(5.4) 

Absolute Difference 
Energy Features 

32 62.52 71.68 
(11.6) 

71.20 
(10.0) 

65.98 
(6.6) 

60.00 
(13.4) 

48.90 61.44 
(2.6) 

62.78 
(2.8) 

49.44 
(6.8) 

Quantized Individual 
Band Energy Features 
(12 bins) 

396 58.34 61.30 
(6.6) 

61.91 
(6.8) 

62.14 
(11.8) 

48.54 
(12.2) 

48.88 60.46 
(12.4) 

61.56 
(8.0) 

50.90 
(7.8) 

Quantized Absolute 
Difference Energy 
Features (12 bins) 

384 58.34 62.27 
(14.4) 

72.63 
(13.4) 

67.98 
(10.6) 

54.90 
(15.8) 

48.90 61.23 
(7.2) 

66.72 
(1.2) 

52.90 
(5.4) 

 618 

Table 2. Generalization performance of the extracted features with different feature selection 619 

methods versus different classifiers under halogen and UV excitations. 620 

 621 

Dataset Illumination 

Source 

Feature Extraction Type Feature 

Selection 

Classifier Accuracy 

Rate 

Dataset-1 

Halogen 

Quantized Absolute Difference Energy (12 bins) 
HBBE MLP 83.26% 

HBBE LDA 61.98% 

Wavelet Features 
LDB MLP 63.64% 

LDB LDA 62.44% 

UV 

Quantized Absolute Difference Energy (12 bins) 
HBBE MLP 67.98% 

HBBE LDA 52.90% 

Wavelet Features 
LDB MLP 61.82% 

LDB LDA 57.10% 

Dataset-2 UV 
Quantized Individual Band Energy (25 bins) 

HBBE MLP 87.50% 

HBBE LDA 67.50% 

LDB MLP 77.50% 
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Wavelet Features 
LDBa LDA 74.65% 

Table 3. Benchmark of the proposed method against wavelet LDB method for Dataset-1 and 622 

Dataset-2 623 

 624 

 Dataset-1   

Threshold Selected Bands (nm) Feature size LOO-CV Accuracy Rate 

1 410-440, 510-560, 580-600, 620-690, 710,720 20 85% 

2 430,440,520,540,550,560,580,590,630-670 15 81% 

3 540,550,560,580,590,640,650,660 12 78% 

4 540,550,560,590,640,650 9 68% 

5 540,550,560 4 62% 

Table 4. Most discriminative spectral bands based on different threshold values associated with 625 

LOO-CV accuracy rates for the Dataset-1. 626 

 627 

 628 

 Dataset-2   

Threshold Selected Bands (nm)   Feature size LOO-CV Accuracy Rate 

1 400,410,420,430,440,480,500,600 19 85% 

2 400,410,420,430,440,600 17 85% 

4 400,420,440 13 90% 

6 400, 420 10 90% 

                                                           
a The results differ from those of Kalkan et al., (2011) as they partitioned the data set into 4 disjoint folds  in their 
experiments, whereas we employed 5-fold cross validation. Even if the number of folds were the same, there might 
be slight differences on the accuracy rates due to chili pepper samples falling into different folds for different trials. 
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8 420 6 85% 

Table 5. Most discriminative spectral bands based on different threshold values associated with 629 

LOO-CV accuracy rates for the Dataset-2. 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

                                                                List of Figure Captions 645 

 646 

Figure 1. General overview of the hyperspectral imaging system. 647 

 648 

Figure 2. Flowchart and interrelated components of the proposed system. 649 

 650 
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Figure 3. Histogram based Aflatoxin aflatoxin variations of chili pepper samples. 651 

 652 

Figure 4. Sample images from the hyperspectral image series of uncontaminated and contaminated 653 

peppers for halogen and UV illuminations. 654 

 655 

Figure 5. a) A sample image (640 nm).  b) Representative gray level histogram of the image in (a) 656 

to 12 bins. The color of the histogram bar at the bottom depicts the total number of pixels falling 657 

in each bin. 658 

 659 

Figure 6. Quantized histogram matrix (QHM) is composed of histogram bars. a) Individual spectral 660 

band energies b) Absolute difference of consecutive spectral band energies. X axis denotes the 661 

spectral bands (or band pairs in the case of absolute difference) and Y axis denotes histogram bar 662 

for that band. 663 

 664 

Figure 7. a) Boxplot, b) Fisher discrimination power, of the individual spectral band energy 665 

features. 666 

 667 

 668 

Figure 8. a) Boxplot, b) Fisher discrimination power, of the absolute difference of consecutive 669 

spectral band energy features. 670 

 671 
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Figure 9. MLP with input, hidden and output layer. Wji is the connection weight between i’th input 672 

node and j’th hidden node. Similarly, Wj is the connection weight between j’th hidden node and 673 

the output node. 674 

 675 

Figure 10. Proposed HBBE method.  L and M designate the number of features and the number of 676 

steps, respectively. 677 

 678 

Figure 11. Schematic diagram of the decaying procedure of the learning rate and momentum 679 

values. 680 

 681 

Figure 12. Dataset-1 vote map for visualizing the most frequently selected spectral bands with the 682 

associated bin numbers. 683 

 684 

Figure 13. Dataset-2 vote map for visualizing the most frequently selected spectral bands with the 685 

associated bin numbers. 686 

 687 

 688 

 689 

 690 

 691 

 692 

FIGURES 693 

 694 

 695 
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